NEIGHBOR SIMILARITY TRUST AGAINST SYBIL ATTACK IN P2P E-COMMERCE

In this paper, we present a distributed structured approach to Sybil attack. This is derived from the fact that our approach is based on the neighbor similarity trust relationship among the neighbor peers. Given a P2P e-commerce trust relationship based on interest, the transactions among peers are flexible as each peer can decide to trade with another peer any time. A peer doesn’t have to consult others in a group unless a recommendation is needed. This approach shows the advantage in exploiting the similarity trust relationship among peers in which the peers are able to monitor each other.

Our contribution in this paper is threefold:

1) We propose SybilTrust that can identify and protect honest peers from Sybil attack. The Sybil peers can have their trust canceled and dismissed from a group.

2) Based on the group infrastructure in P2P e-commerce, each neighbor is connected to the peers by the success of the transactions it makes or the trust evaluation level. A peer can only be recognized as a neighbor depending on whether or not trust level is sustained over a threshold value.

3) SybilTrust enables neighbor peers to carry recommendation identifiers among the peers in a group. This ensures that the group detection algorithms to identify Sybil attack peers to be efficient and scalable in large P2P e-commerce networks.

Malware Propagation in Large-Scale Networks

Malware is pervasive in networks, and poses a critical threat to network security. However, we have very limited understanding of malware behavior in networks to date. In this paper, we investigate how malware propagate in networks from a global perspective. We formulate the problem, and establish a rigorous two layer epidemic model for malware propagation from network to network. Based on the proposed model, our analysis indicates that the distribution of a given malware follows exponential distribution, power law distribution with a short exponential

tail, and power law distribution at its early, late and final stages, respectively. Extensive experiments have been performed through two real-world global scale malware data sets, and the results confirm our theoretical findings.

LOSSLESS AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES WITH PUBLIC KEY CRYPTOGRAPHY

This paper proposes a lossless, a reversible, and a combined data hiding schemes for ciphertext images encrypted by public key cryptosystems with probabilistic and homomorphic properties. In the lossless scheme, the ciphertext pixels are replaced with new values to embed the additional data into several LSB-planes of ciphertext pixels by multi-layer wet paper coding. Then, the embedded data can be directly extracted from the encrypted domain, and the data embedding operation does not affect the decryption of original plaintext image. In the reversible scheme, a preprocessing is employed to shrink the image histogram before image encryption, so that the modification on encrypted images for data embedding will not cause any pixel oversaturation in plaintext domain. Although a slight distortion is introduced, the embedded data can be extracted and the original image can be recovered from the directly decrypted image. Due to the compatibility between the lossless and reversible schemes, the data embedding operations in the two manners can be simultaneously performed in an encrypted image. With the combined technique, a receiver may extract a part of embedded data before decryption, and extract another part of embedded data and recover the original plaintext image after decryption.

Joint Beamforming, Power and Channel Allocation in Multi-User and Multi-Channel Underlay MISO Cognitive Radio Networks

In this paper, we consider a joint beamforming, power, and channel allocation in a multi-user and multi-channel underlay multiple input single output (MISO) cognitive radio network (CRN). In this system, primary users’ (PUs’) spectrum can be reused by the secondary user transmitters (SUTXs) to maximize the spectrum utilization while the intra-user interference is minimized by implementing beamforming at each SU-TX. After formulating the joint optimization problem as a non-convex, mixed integer nonlinear programming (MINLP) problem, we propose a solution which consists of two stages.

In the first stage, a feasible solution for power allocation and beamforming vectors is derived under a given channel allocation by converting the original problem into a convex form with an introduced optimal auxiliary variable and semidefinite relaxation (SDR) approach. After that, in the second stage, two explicit searching algorithms, i.e., genetic algorithm (GA) and simulated annealing (SA)-based algorithm, are proposed to determine suboptimal channel allocations. Simulation results show that
beamforming, power and channel allocation with SA (BPCA-SA) algorithm can achieve close-to-optimal sum-rate while having a lower computational complexity compared with beamforming, power and channel allocation with GA (BPCA-GA) algorithm.

Furthermore, our proposed allocation scheme has significant improvement in achievable sum-rate compared to the existing zero-forcing beamforming (ZFBF).

GDCLUSTER A GENERAL DECENTRALIZED CLUSTERING ALGORITHM

In many popular applications like peer-to-peer systems, large amounts of data are distributed among multiple sources. Analysis of this data and identifying clusters is challenging due to processing, storage, and transmission costs. In this paper, we propose GDCluster, a general fully decentralized clustering method, which is capable of clustering dynamic and distributed data sets. Nodes continuously cooperate through decentralized gossip-based communication to maintain summarized views of the data set. We customize GDCluster for execution of the partition-based and density-based clustering methods on the summarized views, and also offer enhancements to the basic algorithm. Coping with dynamic data is made possible by gradually adapting the clustering model. Our experimental evaluations show that GDCluster can discover the clusters efficiently with scalable transmission cost, and also expose its supremacy in comparison to the popular method LSP2P.

Efficient Top-k Retrieval on Massive Data

Top-k query is an important operation to return a set of interesting points in a potentially huge data space. It is analyzed in this paper that the existing algorithms cannot process top-k query on massive data efficiently. This paper proposes a novel table-scan-based T2S algorithm to efficiently compute top-k results on massive data. T2S first constructs the presorted table, whose tuples are arranged in the order of the round-robin retrieval on the sorted lists. T2S maintains only fixed number of tuples to compute results. The early termination checking for T2S is presented in this paper, along with the analysis of scan depth. The selective retrieval is devised to skip the tuples in the presorted table which are not top-k results. The theoretical analysis proves that selective retrieval can reduce the number of the retrieved tuples significantly. The construction and incremental-update/batch-processing methods for the used structures are proposed.

Effective Key Management in Dynamic Wireless Sensor Networks

Recently, wireless sensor networks (WSNs) have been deployed for a wide variety of applications, including military sensing and tracking, patient status monitoring, traffic flow monitoring, where sensory devices often move between different locations. Securing data and communications requires suitable encryption key protocols. In this paper, we propose a certificateless-effective key management (CL-EKM) protocol for secure communication in dynamic WSNs characterized by node mobility. The CL-EKM supports efficient key updates when a node leaves or joins a cluster and ensures forward and backward key secrecy. The protocol also supports efficient key revocation for compromised nodes and minimizes the impact of a node compromise on the security of other communication links. A security analysis of our scheme shows that our protocol is effective in defending against various attacks.We implement CL-EKM in Contiki OS and simulate it using Cooja simulator to assess its time, energy, communication, and memory performance.

Discovery of Ranking Fraud for Mobile Apps

Ranking fraud in the mobile App market refers to fraudulent or deceptive activities which have a purpose of bumping up the Apps in the popularity list. Indeed, it becomes more and more frequent for App developers to use shady means, such as inflating their Apps’ sales or posting phony App ratings, to commit ranking fraud. While the importance of preventing ranking fraud has been widely recognized, there is limited understanding and research in this area. To this end, in this paper, we provide a holistic view of ranking fraud and propose a ranking fraud detection system for mobile Apps. Specifically, we first propose to accurately locate the ranking fraud by mining the active periods, namely leading sessions, of mobile Apps. Such leading sessions can be leveraged for detecting the local anomaly instead of global anomaly of App rankings. Furthermore, we investigate three types of evidences, i.e., ranking based evidences, rating based evidences and review based evidences, by modeling Apps’ ranking, rating and review behaviors through statistical hypotheses tests. In addition, we propose an optimization based aggregation method to integrate all the evidences for fraud detection.

DETECTION AND RECTIFICATION OF DISTORTED FINGERPRINTS

Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task.

Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

DATA-DRIVEN COMPOSITION FOR SERVICE-ORIENTED SITUATIONAL WEB APPLICATIONS

This paper presents a systematic data-driven approach to assisting situational application development. We first propose a technique to extract useful information from multiple sources to abstract service capabilities with set tags. This supports intuitive expression of user’s desired composition goals by simple queries, without having to know underlying technical details. A planning technique then exploits composition solutions which can constitute the desired goals, even with some potential new interesting composition opportunities. A browser-based tool facilitates visual and iterative refinement of composition solutions, to finally come up with the satisfying outputs. A series of experiments demonstrate the efficiency and effectiveness of our approach.

Data-driven composition technique for situational web applications by using tag-based semantics in to illustrate the overall life-cycle of our “compose as-you-search” composition approach, to propose the clustering technique for deriving tag-based composition semantics, and to evaluate the composition planning effectiveness, respectively. Compared with previous work, this paper is significantly updated by introducing a semi-supervised technique for clustering hierarchical tag based semantics from service documentations and human-annotated annotations. The derived semantics link service capabilities and developers’ processing goals, so that the composition is processed by planning the “Tag HyperLinks” from initialquery to the goals.

The planning algorithm is also further evaluated in terms of recommendation quality, performance, and scalability over data sets from real-world service repositories. Results show that our approach reaches satisfying precision and high-quality composition recommendations. We also demonstrate that our approach can accommodate even larger size of services than real world repositories so as to promise performance. Besides, more details of our interactive development prototyping are presented. We particularly demonstrate how the composition UI can help developers intuitively compose situational applications, and iteratively refine their goals until requirements are finally satisfied.

CONTINUOUS AND TRANSPARENT USER IDENTITY VERIFICATION FOR SECURE INTERNET SERVICES

Session management in distributed Internet services is traditionally based on username and password, explicit logouts and mechanisms of user session expiration using classic timeouts. Emerging biometric solutions allow substituting username and password with biometric data during session establishment, but in such an approach still a single verification is deemed sufficient, and the identity of a user is considered immutable during the entire session. Additionally, the length of the session timeout may impact on the usability of the service and consequent client satisfaction.

This paper explores promising alternatives offered by applying biometrics in the management of sessions. A secure protocol is defined for perpetual authentication through continuous user verification. The protocol determines adaptive timeouts based on the quality, frequency and type of biometric data transparently acquired from the user. The functional behavior of the protocol is illustrated through Matlab simulations, while model-based quantitative analysis is carried out to assess the ability of the protocol to contrast security attacks exercised by different kinds of attackers. Finally, the current prototype for PCs and Android smartphones is discussed.

Collision Tolerant and Collision Free Packet Scheduling for Underwater Acoustic Localization

To implement the system to solve the joint problem of packet scheduling and self-localization in an underwater acoustic sensor network with randomly distributed nodes. In terms of packet scheduling, our goal is to minimize the localization time, and to do so we consider two packet transmission schemes, namely a collision-free scheme (CFS), and a collision-tolerant scheme (CTS). The required localization time is formulated for these schemes, and through analytical results and numerical examples their performances are shown to be dependent on the circumstances.  When the packet duration is short (as is the case for a localization packet), the operating area is large (above 3 km in at least one dimension), and the average probability of packet-loss is not close to zero, the collision-tolerant scheme is found to require a shorter localization time.

CLOUD-BASED MULTIMEDIA CONTENT PROTECTION SYSTEM

We propose a new design for large-scale multimedia content protection systems. Our design leverages cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommodate varying workloads. The proposed system can be used to protect different multimedia content types, including 2-D videos, 3-D videos, images, audio clips, songs, and music clips. The system can be deployed on private and/or public clouds. Our system has two novel components: (i) method to create signatures of 3-D videos, and (ii) distributed matching engine for multimedia objects. The signature method creates robust and representative signatures of 3-D videos that capture the depth signals in these videos and it is computationally efficient to compute and compare as well as it requires small storage. The distributed matching engine achieves high scalability and it is designed to support different multimedia objects.

We implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud. Our experiments with more than 11,000 3-D videos and 1 million images show the high accuracy and scalability of the proposed system. In addition, we compared our system to the protection system used by YouTube and our results show that the YouTube protection system fails to detect most copies of 3-D videos, while our system detects more than 98% of them. This comparison shows the need for the proposed 3-D signature method, since the state-of-the-art commercial system was not able to handle 3-D videos.

BRACER A DISTRIBUTED BROADCAST PROTOCOL IN MULTI-HOP COGNITIVE RADIO AD HOC NETWORKS

Broadcast is an important operation in wireless ad hoc networks where control information is usually propagated as broadcasts for the realization of most networking protocols. In traditional ad hoc networks, since the spectrum availability is uniform, broadcasts are delivered via a common channel which can be heard by all users in a network. However, in cognitive radio (CR) ad hoc networks, different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks.

In this paper, a fully-distributed Broadcast protocol in multi-hop Cognitive Radio ad hoc networks with collision avoidance, BRACER, is proposed. In our design, we consider practical scenarios that each unlicensed user is not assumed to be aware of the global network topology, the spectrum availability information of other users, and time synchronization information. By intelligently downsizing the original available channel set and designing the broadcasting sequences and scheduling schemes, our proposed broadcast protocol can provide very high successful broadcast ratio while achieving very short average broadcast delay. It can also avoid broadcast collisions. To the best of our knowledge, this is the first work that addresses the unique broadcasting challenges in multi-hop CR ad hoc networks with collision avoidance.

A Methodology for Extracting Standing Human Bodies From Single Images

Segmentation of human bodies in images is a challenging task that can facilitate numerous applications, like scene understanding and activity recognition. In order to cope with the highly dimensional pose space, scene complexity, and various human appearances, the majority of existing works require computationally complex training and template matching processes.
We propose a bottom-up methodology for automatic extraction of human bodies from single images, in the case of almost upright poses in cluttered environments. The position, dimensions, and color of the face are used for the localization of the human body, construction of the models for the upper and lower body according to anthropometric constraints, and estimation of the skin color.
Different levels of segmentation granularity are combined to extract the pose with highest potential. The segments that belong to the human body arise through the joint estimation of the foreground and background during the body part search phases, which alleviates the need for exact shape matching. The performance of our algorithm is measured using 40 images (43 persons) from the INRIA person dataset and 163 images from the “lab1” dataset, where the measured accuracies are 89.53% and 97.68%, respectively. Qualitative and quantitative experimental results demonstrate that our methodology outperforms state-of-the-art interactive and hybrid top-down/bottom-up approaches.