NEIGHBOR SIMILARITY TRUST AGAINST SYBIL ATTACK IN P2P E-COMMERCE

ABSTRACT:

In this paper, we present a distributed structured approach to Sybil attack. This is derived from the fact that our approach is based on the neighbor similarity trust relationship among the neighbor peers. Given a P2P e-commerce trust relationship based on interest, the transactions among peers are flexible as each peer can decide to trade with another peer any time. A peer doesn’t have to consult others in a group unless a recommendation is needed. This approach shows the advantage in exploiting the similarity trust relationship among peers in which the peers are able to monitor each other.

Our contribution in this paper is threefold:

1) We propose SybilTrust that can identify and protect honest peers from Sybil attack. The Sybil peers can have their trust canceled and dismissed from a group.

2) Based on the group infrastructure in P2P e-commerce, each neighbor is connected to the peers by the success of the transactions it makes or the trust evaluation level. A peer can only be recognized as a neighbor depending on whether or not trust level is sustained over a threshold value.

3) SybilTrust enables neighbor peers to carry recommendation identifiers among the peers in a group. This ensures that the group detection algorithms to identify Sybil attack peers to be efficient and scalable in large P2P e-commerce networks.

GOAL OF THE PROJECT:

The goal of trust systems is to ensure that honest peers are accurately identified as trustworthy and Sybil peers as untrustworthy. To unify terminology, we call all identities created by malicious users as Sybil peers. In a P2P e-commerce application scenario, most of the trust considerations depend on the historical factors of the peers. The influence of Sybil identities can be reduced based on the historical behavior and recommendations from other peers. For example, a peer can give positive a recommendation to a peer which is discovered is a Sybil or malicious peer. This can diminish the influence of Sybil identities hence reduce Sybil attack. A peer which has been giving dishonest recommendations will have its trust level reduced. In case it reaches a certain threshold level, the peer can be expelled from the group. Each peer has an identity, which is either honest or Sybil.

A Sybil identity can be an identity owned by a malicious user, or it can be a bribed/stolen identity, or it can be a fake identity obtained through a Sybil attack. These Sybil attack peers are employed to target honest peers and hence subvert the system. In Sybil attack, a single malicious user creates a large number of peer identities called sybils. These sybils are used to launch security attacks, both at the application level and at the overlay level, application level, sybils can target other honest peers while transacting with them, whereas at the overlay level, sybils can disrupt the services offered by the overlay layer like routing, data storage, lookup, etc. In trust systems, colluding Sybil peers may artificially increase a (malicious) peer’s rating (e.g., eBay).

INTRODUCTION:

P2P networks range from communication systems like email and instant messaging to collaborative content rating, recommendation, and delivery systems such as YouTube, Gnutela, Facebook, Digg, and BitTorrent. They allow any user to join the system easily at the expense of trust, with very little validation control. P2P overlay networks are known for their many desired attributes like openness, anonymity, decentralized nature, self-organization, scalability, and fault tolerance. Each peer plays the dual role of client as well as server, meaning that each has its own control. All the resources utilized in the P2P infrastructure are contributed by the peers themselves unlike traditional methods where a central authority control is used. Peers can collude and do all sorts of malicious activities in the open-access distributed systems. These malicious behaviors lead to service quality degradation and monetary loss among business partners. Peers are vulnerable to exploitation, due to the open and near-zero cost of creating new identities. The peer identities are then utilized to influence the behavior of the system.

However, if a single defective entity can present multiple identities, it can control a substantial fraction of the system, thereby undermining the redundancy. The number of identities that an attacker can generate depends on the attacker’s resources such as bandwidth, memory, and computational power. The goal of trust systems is to ensure that honest peers are accurately identified as trustworthy and Sybil peers as untrustworthy. To unify terminology, we call all identities created by malicious users as Sybil peers. In a P2P e-commerce application scenario, most of the trust considerations depend on the historical factors of the peers. The influence of Sybil identities can be reduced based on the historical behavior and recommendations from other peers. For example, a peer can give positive a recommendation to a peer which is discovered is a Sybil or malicious peer. This can diminish the influence of Sybil identities hence reduce Sybil attack. A peer which has been giving dishonest recommendations will have its trust level reduced. In case it reaches a certain threshold level, the peer can be expelled from the group.

Each peer has an identity, which is either honest or Sybil. A Sybil identity can be an identity owned by a malicious user, or it can be a bribed/stolen identity, or it can be a fake identity obtained through a Sybil attack. These Sybil attack peers are employed to target honest peers and hence subvert the system. In Sybil attack, a single malicious user creates a large number of peer identities called sybils. These sybils are used to launch security attacks, both at the application level and at the overlay level at the application level, sybils can target other honest peers while transacting with them, whereas at the overlay level, sybils can disrupt the services offered by the overlay layer like routing, data storage, lookup, etc. In trust systems, colluding Sybil peers may artificially increase a (malicious) peer’s rating (e.g., eBay). Systems like Credence rely on a trusted central authority to prevent maliciousness.

Defending against Sybil attack is quite a challenging task. A peer can pretend to be trusted with a hidden motive. The peer can pollute the system with bogus information, which interferes with genuine business transactions and functioning of the systems. This must be counter prevented to protect the honest peers. The link between an honest peer and a Sybil peer is known as an attack edge. As each edge involved resembles a human-established trust, it is difficult for the adversary to introduce an excessive number of attack edges. The only known promising defense against Sybil attack is to use social networks to perform user admission control and limit the number of bogus identities admitted to a system. The use of social networks between two peers represents real-world trust relationship between users. In addition, authentication-based mechanisms are used to verify the identities of the peers using shared encryption keys, or location information.

LITRATURE SURVEY:

KEEP YOUR FRIENDS CLOSE: INCORPORATING TRUST INTO SOCIAL NETWORK-BASED SYBIL DEFENSES

AUTHOR: A. Mohaisen, N. Hopper, and Y. Kim

PUBLISH: Proc. IEEE Int. Conf. Comput. Commun., 2011, pp. 1–9.

EXPLANATION:

Social network-based Sybil defenses exploit the algorithmic properties of social graphs to infer the extent to which an arbitrary node in such a graph should be trusted. However, these systems do not consider the different amounts of trust represented by different graphs, and different levels of trust between nodes, though trust is being a crucial requirement in these systems. For instance, co-authors in an academic collaboration graph are trusted in a different manner than social friends. Furthermore, some social friends are more trusted than others. However, previous designs for social network-based Sybil defenses have not considered the inherent trust properties of the graphs they use. In this paper we introduce several designs to tune the performance of Sybil defenses by accounting for differential trust in social graphs and modeling these trust values by biasing random walks performed on these graphs. Surprisingly, we find that the cost function, the required length of random walks to accept all honest nodes with overwhelming probability, is much greater in graphs with high trust values, such as co-author graphs, than in graphs with low trust values such as online social networks. We show that this behavior is due to the community structure in high-trust graphs, requiring longer walk to traverse multiple communities. Furthermore, we show that our proposed designs to account for trust, while increase the cost function of graphs with low trust value, decrease the advantage of attacker.

FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

AUTHOR: S. Chang, Y. Qi, H. Zhu, J. Zhao, and X. Shen

PUBLISH: IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 6, pp. 1103–1114, Jun. 2012.

EXPLANATION:

In urban vehicular networks, where privacy, especially the location privacy of anonymous vehicles is highly concerned, anonymous verification of vehicles is indispensable. Consequently, an attacker who succeeds in forging multiple hostile identifies can easily launch a Sybil attack, gaining a disproportionately large influence. In this paper, we propose a novel Sybil attack detection mechanism, Footprint, using the trajectories of vehicles for identification while still preserving their location privacy. More specifically, when a vehicle approaches a road-side unit (RSU), it actively demands an authorized message from the RSU as the proof of the appearance time at this RSU. We design a location-hidden authorized message generation scheme for two objectives: first, RSU signatures on messages are signer ambiguous so that the RSU location information is concealed from the resulted authorized message; second, two authorized messages signed by the same RSU within the same given period of time (temporarily linkable) are recognizable so that they can be used for identification. With the temporal limitation on the linkability of two authorized messages, authorized messages used for long-term identification are prohibited. With this scheme, vehicles can generate a location-hidden trajectory for location-privacy-preserved identification by collecting a consecutive series of authorized messages. Utilizing social relationship among trajectories according to the similarity definition of two trajectories, Footprint can recognize and therefore dismiss “communities” of Sybil trajectories. Rigorous security analysis and extensive trace-driven simulations demonstrate the efficacy of Footprint.

SYBILLIMIT: A NEAROPTIMAL SOCIAL NETWORK DEFENSE AGAINST SYBIL ATTACK

AUTHOR: H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao

PUBLISH: IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 3–17, Jun. 2010.

EXPLANATION:

Decentralized distributed systems such as peer-to-peer systems are particularly vulnerable to sybil attacks, where a malicious user pretends to have multiple identities (called sybil nodes). Without a trusted central authority, defending against sybil attacks is quite challenging. Among the small number of decentralized approaches, our recent SybilGuard protocol [H. Yu et al., 2006] leverages a key insight on social networks to bound the number of sybil nodes accepted. Although its direction is promising, SybilGuard can allow a large number of sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fast mixing, which has never been confirmed in the real world. This paper presents the novel SybilLimit protocol that leverages the same insight as SybilGuard but offers dramatically improved and near-optimal guarantees. The number of sybil nodes accepted is reduced by a factor of ominus(radicn), or around 200 times in our experiments for a million-node system. We further prove that SybilLimit’s guarantee is at most a log n factor away from optimal, when considering approaches based on fast-mixing social networks. Finally, based on three large-scale real-world social networks, we provide the first evidence that real-world social networks are indeed fast mixing. This validates the fundamental assumption behind SybilLimit’s and SybilGuard’s approach.

SYSTEM ANALYSIS

EXISTING SYSTEM:

Existing work on Sybil attack makes use of social networks to eliminate Sybil attack, and the findings are based on preventing Sybil identities. In this paper, we propose the use of neighbor similarity trust in a group P2P ecommerce based on interest relationships, to eliminate maliciousness among the peers. This is referred to as SybilTrust. In SybilTrust, the interest based group infrastructure peers have a neighbor similarity trust between each other, hence they are able to prevent Sybil attack. SybilTrust gives a better relationship in e-commerce transactions as the peers create a link between peer neighbors. This provides an important avenue for peers to advertise their products to other interested peers and to know new market destinations and contacts as well. In addition, the group enables a peer to join P2P e-commerce network and makes identity more difficult.

Peers use self-certifying identifiers that are exchanged when they initially come into contact. These can be used as public keys to verify digital signatures on the messages sent by their neighbors. We note that, all communications between peers are digitally signed. In this kind of relationship, we use neighbors as our point of reference to address Sybil attack. In a group, whatever admission we set, there are honest, malicious, and Sybil peers who are authenticated by an admission control mechanism to join the group. More honest peers are admitted compared to malicious peers, where the trust association is aimed at positive results. The knowledge of the graph may reside in a single party, or be distributed across all users.

DISADVANTAGES:

Sybil peer trades with very few unsuccessful transactions, we can deduce the peer is a Sybil peer. This is supported by our approach which proposes peers existing in a group have six types of keys.

The keys which exist mostly are pairwise keys supported by the group keys. We also note if an honest group has a link with another group which has Sybil peers, the Sybil group tend to have information which is not complete.

  1. Fake Users Enters Easy.
  2. This makes Sybil attacks.

PROPOSED SYSTEM:

In this paper, we assume there are three kinds of peers in the system: legitimate peers, malicious peers, and Sybil peers. Each malicious peer cheats its neighbors by creating multiple identity, referred to as Sybil peers. In this paper, P2P e-commerce communities are in several groups. A group can be either open or restrictive depending on the interest of the peers. We investigate the peers belonging to a certain interest group. In each group, there is a group leader who is responsible for managing coordination of activities in a group.

The principal building block of Sybil Trust approach is the identifier distribution process. In the approach, all the peers with similar behavior in a group can be used as identifier source. They can send identifiers to others as the system regulates. If a peer sends less or more, the system can be having a Sybil attack peer. The information can be broadcast to the rest of the peers in a group. When peers join a group, they acquire different identities in reference to the group. Each peer has neighbors in the group and outside the group. Sybil attack peers forged by the same malicious peer have the same set of physical neighbors that a malicious peer has.

Each neighbor is connected to the peers by the success of the transaction it makes or the trust evaluation level. To detect the Sybil attack, where a peer can have different identity, a peer is evaluated in reference to its trustworthiness and the similarity to the neighbors. If the neighbors do not have same trust data as the concerned peer, including its position, it can be detected that the peer has multiple identity and is cheating

ADVANTAGES:

Our perception is that, the attacker controls a number of neighbor similarity peers, whereby a randomly chosen identifier source is relatively “far away” from most Sybil attack peer relationship. Every peer uses a “reversed” routing table. The source peer will always send some information to the peers which have neighbor similarity trust. However, if they do not reply, it can black list them. If they do reply and the source is overwhelmed by the overhead of such replies, then the adversary is effectively launching a DoS attack. Notice that the adversary can launch a DoS attack against the source. This enables two peers to propagate their public keys and IP addresses backward along the route to learn about the peers.

  • It is Helpful to find Sybil Attacks.
  • It is used to Find Fake UserID.
  • It is feasible to limit the number of attack edges in online social networks by relationship rating.

HARDWARE & SOFTWARE REQUIREMENTS:

HARDWARE REQUIREMENT:

v    Processor                                 –    Pentium –IV

  • Speed       –    1 GHz
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA

SOFTWARE REQUIREMENTS:

  • Operating System        :           Windows XP or Win7
  • Front End       :           JAVA JDK 1.7
  • Script :           Java Script
  • Tools :           Netbeans 7
  • Document :           MS-Office 2007