Panda Public Auditing for Shared Data with Efficient User Revocation in the Cloud

  1. ABSTRACT:

With data storage and sharing services in the cloud, users can easily modify and share data as a group. To ensure share data integrity can be verified publicly, users in the group need to compute signatures on all the blocks in shared data. Different blocks in shared data are generally signed by different users due to data modifications performed by different users. For security reasons, once a user is revoked from the group, the blocks which were previously signed by this revoked user must be re-signed by an existing user. The straight forward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user revocation, is inefficient due to the large size of shared data in the cloud. In this paper, we propose a novel public auditing mechanism

For the integrity of shared data with efficient user revocation in mind. By utilizing the idea of proxy re-signatures, we allow the cloud tore-sign blocks on behalf of existing users during user revocation, so that existing users do not need to download and re-sign blocks by themselves. In addition, a public verifier is always able to audit the integrity of shared data without retrieving the entire data from the

Cloud, even if some part of shared data has been re-signed by the cloud. Moreover, our mechanism is able to support batch auditing by verifying multiple auditing tasks simultaneously. Experimental results show that our mechanism can significantly improve the efficiency of user revocation.

  1. INTRODUCTION

With data storage and sharing services (such as Dropbox and Google Drive) provided by the cloud, people can easily work together as a group by sharing data with each other. More specifically, once a user creates shared data in the cloud, every user in the group is able to not only access and modify shared data, but also share the latest version of the shared data with the rest of the group. Although cloud providers promise a more secure and reliable environment to the users, the integrity of data in the cloud may still be compromised, due to the existence of hardware/software failures and human errors.

To protect the integrity of data in the cloud, a number of mechanisms have been proposed. In these mechanisms, a signature is attached to each block in data, and the integrity of data relies on the correctness of all the signatures. One of the most significant and common features of these mechanisms is to allow a public verifier to efficiently check data integrity in the cloud without downloading the entire data, referred to as public auditing (or denoted as Provable Data Possession). This public verifier could be a client who would like to utilize cloud data for particular purposes (e.g., search, computation, data mining, etc.) or a thirdparty auditor (TPA) who is able to provide verification services on data integrity to users. Most of the previous works focus on auditing the integrity of personal data. Different from these works, several recent works focus on how to preserve identity privacy from public verifiers when auditing the integrity of shared data. Unfortunately, none of the above mechanisms, considers the efficiency of user revocation when auditing the correctness of shared data in the cloud.

With shared data, once a user modifies a block, she also needs to compute a new signature for the modified block. Due to the modifications from different users, different blocks are signed by different users. For security reasons, when a user leaves the group or misbehaves, this user must be revoked from the group. As a result, this revoked user should no longer be able to access and modify shared data, and the signatures generated by this revoked user are no longer valid to the group. Therefore, although the content of shared data is not changed during user revocation, the blocks, which were previously signed by the revoked user, still need to be re-signed by an existing user in the group. As a result, the integrity of the entire data can still be verified with the public keys of existing users only.

Since shared data is outsourced to the cloud and users no longer store it on local devices, a straightforward method to re-compute these signatures during user revocation is to ask an existing user to first download the blocks previously signed by the revoked user verify the correctness of these blocks, then re-sign these blocks, and finally upload the new signatures to the cloud. However, this straightforward method may cost the existing user a huge amount of communication and computation resources by downloading and verifying blocks, and by re-computing and uploading signatures, especially when the number of re-signed blocks is quite large or the membership of the group is frequently changing. To make this matter even worse, existing users may access their data sharing services provided by the cloud with resource limited devices, such as mobile phones, which further prevents existing users from maintaining the correctness of shared data efficiently during user revocation.

Clearly, if the cloud could possess each user’s private key, it can easily finish the re-signing task for existing users without asking them to download and re-sign blocks. However, since the cloud is not in the same trusted domain with each user in the group, outsourcing every user’s private key to the cloud would introduce significant security issues. Another important problem we need to consider is that the re-computation of any signature during user revocation should not affect the most attractive property of public auditing — auditing data integrity publicly without retrieving the entire data. Therefore, how to efficiently reduce the significant burden to existing users introduced by user revocation, and still allow a public verifier to check the integrity of shared data without downloading the entire data from the cloud, is a challenging task.

In this paper, we propose Panda, a novel public auditing mechanism for the integrity of shared data with efficient user revocation in the cloud. In our mechanism, by utilizing the idea of proxy re-signatures, once a user in the group is revoked, the cloud is able to resign the blocks, which were signed by the revoked user, with a re-signing key. As a result, the efficiency of user revocation can be significantly improved, and computation and communication resources of existing users can be easily saved. Meanwhile, the cloud, who is not in the same trusted domain with each user, is only able to convert a signature of the revoked user into a signature of an existing user on the same block, but it cannot sign arbitrary blocks on behalf of either the revoked user or an existing user. By designing a new proxy re-signature scheme with nice properties, which traditional proxy resignatures do no have, our mechanism is always able to check the integrity of shared data without retrieving the entire data from the cloud.

  1. LITRATURE SURVEY

PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOATION IN THE CLOUD

PUBLICATION: B. Wang, B. Li, and H. Li, in the Proceedings of IEEE INFOCOM 2013, 2013, pp. 2904–2912.

With data storage and sharing services in the cloud, users can easily modify and share data as a group. To ensure shared data integrity can be verified publicly, users in the group need to compute signatures on all the blocks in shared data. Different blocks in shared data are generally signed by different users due to data modifications performed by different users. For security reasons, once a user is revoked from the group, the blocks which were previously signed by this revoked user must be re-signed by an existing user. The straightforward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user revocation, is inefficient due to the large size of shared data in the cloud. In this paper, we propose a novel public auditing mechanism for the integrity of shared data with efficient user revocation in mind. By utilizing the idea of proxy re-signatures, we allow the cloud to re-sign blocks on behalf of existing users during user revocation, so that existing users do not need to download and re-sign blocks by themselves. In addition, a public verifier is always able to audit the integrity of shared data without retrieving the entire data from the cloud, even if some part of shared data has been re-signed by the cloud. Moreover, our mechanism is able to support batch auditing by verifying multiple auditing tasks simultaneously. Experimental results show that our mechanism can significantly improve the efficiency of user revocation.

A VIEW OF CLOUD COMPUTING, COMMUNICATIONS OF THE ACM

PUBLICATION: M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, vol. 53, no. 4, pp. 50–58, Apirl 2010.

Cloud computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Developers with innovative ideas for new Internet services no longer require the large capital outlays in hardware to deploy their service or the human expense to operate it. They need not be concerned about overprovisioning for a service whose popularity does not meet their predictions, thus wasting costly resources, or underprovisioning for one that becomes wildly popular, thus missing potential customers and revenue. Moreover, companies with large batch-oriented tasks can get results as quickly as their programs can scale, since using 1,000 servers for one hour costs no more than using one server for 1,000 hours. This elasticity of resources, without paying a premium for large scale, is unprecedented in the history of IT.

PROVABLE DATA POSSESSION AT UNTRUSTED STORES

PUBLICATION: G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, in the Proceedings of ACM CCS 2007, 2007, pp. 598–610.

We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the server, which drastically reduces I/O costs. The client maintains a constant amount of metadata to verify the proof. The challenge/response protocol transmits a small, constant amount of data, which minimizes network communication. Thus, the PDP model for remote data checking supports large data sets in widely-distributed storage systems. We present two provably-secure PDP schemes that are more efficient than previous solutions, even when compared with schemes that achieve weaker guarantees. In particular, the overhead at the server is low (or even constant), as opposed to linear in the size of the data. Experiments using our implementation verify the practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by cryptographic computation.

COMPACT PROOFS OF RETRIEVABILITY

PUBLICATION: H. Shacham and B. Waters, in the Proceedings of ASIACRYPT 2008. Springer-Verlag,2008,pp. 90–107.

In a proof-of-retrievability system, a data storage center must prove to a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both effcient and provably secure | that is, it should be possible to extract the client’s data from any prover that passes a verification check. In this paper, we give the rst proof-of-  retrievability schemes with full proofs of security against arbitrary adversaries in the strongest model, that of Juels and Kaliski. Our  rst scheme, built from BLS signatures and secure in the random oracle model, features a proof-of-retrievability protocol in which the client’s query and server’s response are both extremely short. This scheme allows public verify ability: anyone can act as a verifier, not just the  le owner. Our second scheme, which builds on pseudorandom functions (PRFs) and  is secure in the standard model, allows only private verification. It features a proof-of- retrievability protocol with an even shorter server’s response than our rst scheme, but the client’s query is long. Both schemes rely on homomorphic properties to aggregate a proof into one small authenticator value.

CHAPTER 2

2.0 SYSTEM ANALYSIS

2.1 EXISTING SYSTEM:

An existing system the file uploaded in cloud which not signed by user in each time of  upload. So that integrity of shared data is not possible in existing system. However, since the cloud is not in the same trusted domain with each user in the group, outsourcing every user’s private key to the cloud would introduce significant security issue.

2.1.1 DISADVANTAGES:

2.2 PROPOSED SYSTEM:

In our Proposed system may lie to verifiers about the incorrectness of shared data in order to save the reputation of its data services and avoid losing money on its data services. In addition, we also assume there is no collusion between the cloud and any user during the design of our mechanism. Generally, the incorrectness of share data under the above semi trusted model can be introduced by hardware/software failures or human errors happened in the cloud. Considering these factors, users do not fully trust the cloud with the integrity of shared data.

2.2.1 ADVANTAGES:

1.Blocking User account

2.Security question

3.Login with secret key in each time

2.3 HARDWARE & SOFTWARE REQUIREMENTS:

2.3.1 HARDWARE REQUIREMENT:

v    Processor                                 –    Pentium –IV

  • Speed                                      –    1.1 GHz
    • RAM                                       –    256 MB (min)
    • Hard Disk                               –   20 GB
    • Floppy Drive                           –    1.44 MB
    • Key Board                              –    Standard Windows Keyboard
    • Mouse                                     –    Two or Three Button Mouse
    • Monitor                                   –    SVGA

2.3.2 SOFTWARE REQUIREMENTS:

  • Operating System                   :           Windows XP
  • Front End                                :           Microsoft Visual Studio .NET 2008
  • Back End                                :           MS-SQL Server 2005
  • Document                               :           MS-Office 2007

CHAPTER 3

3.0 SYSTEM DESIGN:

Data Flow Diagram / Use Case Diagram / Flow Diagram:

  • The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to represent a system in terms of the input data to the system, various processing carried out on these data, and the output data is generated by the system
  • The data flow diagram (DFD) is one of the most important modeling tools. It is used to model the system components. These components are the system process, the data used by the process, an external entity that interacts with the system and the information flows in the system.
  • DFD shows how the information moves through the system and how it is modified by a series of transformations. It is a graphical technique that depicts information flow and the transformations that are applied as data moves from input to output.
  • DFD is also known as bubble chart. A DFD may be used to represent a system at any level of abstraction. DFD may be partitioned into levels that represent increasing information flow and functional detail.

NOTATION:

SOURCE OR DESTINATION OF DATA:

External sources or destinations, which may be people or organizations or other entities

DATA SOURCE:

Here the data referenced by a process is stored and retrieved.

PROCESS:

People, procedures or devices that produce data. The physical component is not identified.

DATA FLOW:

Data moves in a specific direction from an origin to a destination. The data flow is a “packet” of data.

MODELING RULES:

There are several common modeling rules when creating DFDs:

  1. All processes must have at least one data flow in and one data flow out.
  2. All processes should modify the incoming data, producing new forms of outgoing data.
  3. Each data store must be involved with at least one data flow.
  4. Each external entity must be involved with at least one data flow.
  5. A data flow must be attached to at least one process.


3.1 BLOCK DIAGRAM

3.2 DATAFLOW DIAGRAM

UML DIAGRAMS:

3.2 USE CASE DIAGRAM:

3.3 CLASS DIAGRAM:

3.4 SEQUENCE DIAGRAM:

3.5 ACTIVITY DIAGRAM:

CHAPTER 4

4.0 IMPLEMENTATION:

4.1 ALGORITHM

4.2 MODULES:

1. USER MODULE:

Registration

File Upload

Download

Reupload

Unblock module

2. AUDITOR MODULE:

File Verification module

View File

3. ADMIN MODULE:

View Files

Block user

4.3 MODULE DESCRIPTION:

  1. USER MODULE:

Registration:

In this module each user register his user details for using files. Only registered user can able to login in cloud server .

File Upload:

In this module user upload a block of files in the cloud with  encryption by using his secret key. This ensure the files to be protected from unauthorized user.

Download:

This module allows the user to download the file using his secret key to decrypt the downloaded data of  blocked user and verify the data and reupload the block of file into cloud server with encryption .This ensure the files to be protected from unauthorized user.

Reupload:

This module allow the user to reupload the downloaded files of blocked user into cloud server with resign the files(i.e) the files is uploaded with new signature like new secret with encryption to protected the data from unauthorized user.

Unblock Module:

This module allow the user to unblock his user account by answering his security question regarding to answer that  provided by his at the time of registration. Once the answer is matched to the answer of registration time answer then only account will be unlocked.

  • AUDITOR MODULE:

File Verification module:

The public verifier is able to correctly check the integrity of shared data. The public verifier can audit the integrity of shared data without retrieving the entire data from the cloud, even if some blocks in shared data have been re-signed by the cloud.

Files View:

In this module public auditor view the all details of upload, download, blocked user, reupload.

  • ADMIN MODULE:

View Files:

In this module public auditor view the all details of upload, download, blocked user, reupload.

Block User:

In this module admin block the misbehave user account to protect the integrity of shared data

CHAPTER 5

5.0 SYSTEM STUDY:

5.1 FEASIBILITY STUDY:

The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company.  For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are      

  • ECONOMICAL FEASIBILITY
  • TECHNICAL FEASIBILITY
  • SOCIAL FEASIBILITY

5.1.1 ECONOMICAL FEASIBILITY:                  

This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

5.1.2 TECHNICAL FEASIBILITY:

This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.  

5.1.3 SOCIAL FEASIBILITY:  

The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

5.2 SYSTEM TESTING:

Testing is a process of checking whether the developed system is working according to the original objectives and requirements. It is a set of activities that can be planned in advance and conducted systematically. Testing is vital to the success of the system. System testing makes a logical assumption that if all the parts of the system are correct, the global will be successfully achieved. In adequate testing if not testing leads to errors that may not appear even many months. This creates two problems, the time lag between the cause and the appearance of the problem and the effect of the system errors on the files and records within the system. A small system error can conceivably explode into a much larger Problem. Effective testing early in the purpose translates directly into long term cost savings from a reduced number of errors. Another reason for system testing is its utility, as a user-oriented vehicle before implementation. The best programs are worthless if it produces the correct outputs.

5.2.1 UNIT TESTING:

A program represents the logical elements of a system. For a program to run satisfactorily, it must compile and test data correctly and tie in properly with other programs. Achieving an error free program is the responsibility of the programmer. Program  testing  checks  for  two  types  of  errors:  syntax  and  logical. Syntax error is a program statement that violates one or more rules of the language in which it is written. An improperly defined field dimension or omitted keywords are common syntax errors. These errors are shown through error message generated by the computer. For Logic errors the programmer must examine the output carefully.

UNIT TESTING:

Description Expected result
Test for application window properties. All the properties of the windows are to be properly aligned and displayed.
Test for mouse operations. All the mouse operations like click, drag, etc. must perform the necessary operations without any exceptions.

5.1.3 FUNCTIONAL TESTING:

Functional testing of an application is used to prove the application delivers correct results, using enough inputs to give an adequate level of confidence that will work correctly for all sets of inputs. The functional testing will need to prove that the application works for each client type and that personalization function work correctly.When a program is tested, the actual output is compared with the expected output. When there is a discrepancy the sequence of instructions must be traced to determine the problem.  The process is facilitated by breaking the program into self-contained portions, each of which can be checked at certain key points. The idea is to compare program values against desk-calculated values to isolate the problems.

FUNCTIONAL TESTING:

Description Expected result
Test for all modules. All peers should communicate in the group.
Test for various peer in a distributed network framework as it display all users available in the group. The result after execution should give the accurate result.

5.1. 4 NON-FUNCTIONAL TESTING:

 The Non Functional software testing encompasses a rich spectrum of testing strategies, describing the expected results for every test case. It uses symbolic analysis techniques. This testing used to check that an application will work in the operational environment. Non-functional testing includes:

  • Load testing
  • Performance testing
  • Usability testing
  • Reliability testing
  • Security testing

5.1.5 LOAD TESTING:

An important tool for implementing system tests is a Load generator. A Load generator is essential for testing quality requirements such as performance and stress. A load can be a real load, that is, the system can be put under test to real usage by having actual telephone users connected to it. They will generate test input data for system test.

Load Testing

Description Expected result
It is necessary to ascertain that the application behaves correctly under loads when ‘Server busy’ response is received. Should designate another active node as a Server.

5.1.5 PERFORMANCE TESTING:

Performance tests are utilized in order to determine the widely defined performance of the software system such as execution time associated with various parts of the code, response time and device utilization. The intent of this testing is to identify weak points of the software system and quantify its shortcomings.

PERFORMANCE TESTING:

Description Expected result
This is required to assure that an application perforce adequately, having the capability to handle many peers, delivering its results in expected time and using an acceptable level of resource and it is an aspect of operational management.   Should handle large input values, and produce accurate result in a  expected time.  

5.1.6 RELIABILITY TESTING:

The software reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time and it is being ensured in this testing. Reliability can be expressed as the ability of the software to reveal defects under testing conditions, according to the specified requirements. It the portability that a software system will operate without failure under given conditions for a given time interval and it focuses on the behavior of the software element. It forms a part of the software quality control team.

RELIABILITY TESTING:

Description Expected result
This is to check that the server is rugged and reliable and can handle the failure of any of the components involved in provide the application. In case of failure of  the server an alternate server should take over the job.

5.1.7 SECURITY TESTING:

Security testing evaluates system characteristics that relate to the availability, integrity and confidentiality of the system data and services. Users/Clients should be encouraged to make sure their security needs are very clearly known at requirements time, so that the security issues can be addressed by the designers and testers.

SECURITY TESTING:

Description Expected result
Checking that the user identification is authenticated. In case failure it should not be connected in the framework.
Check whether group keys in a tree are shared by all peers. The peers should know group key in the same group.

5.1.7 WHITE BOX TESTING:

White  box  testing,  sometimes called  glass-box  testing is  a test  case  design method  that  uses  the  control  structure  of the procedural  design  to  derive  test  cases. Using  white  box  testing  method,  the software  engineer  can  derive  test  cases. The White box testing focuses on the inner structure of the software structure to be tested.

5.1.8 WHITE BOX TESTING:

Description Expected result
Exercise all logical decisions on their true and false sides. All the logical decisions must be valid.
Execute all loops at their boundaries and within their operational bounds. All the loops must be finite.
Exercise internal data structures to ensure their validity. All the data structures must be valid.

5.1.9 BLACK BOX TESTING:

Black box testing, also called behavioral testing, focuses on the functional requirements of the software.  That  is,  black  testing  enables  the software engineer  to  derive  sets  of  input  conditions  that  will  fully  exercise  all  functional requirements  for  a  program.  Black box testing is not alternative to white box techniques.  Rather  it  is  a  complementary  approach  that  is  likely  to  uncover  a different  class  of  errors  than  white box  methods. Black box testing attempts to find errors which focuses on inputs, outputs, and principle function of a software module. The starting point of the black box testing is either a specification or code. The contents of the box are hidden and the stimulated software should produce the desired results.

5.1.10 BLACK BOX TESTING:

Description Expected result
To check for incorrect or missing functions. All the functions must be valid.
To check for interface errors. The entire interface must function normally.
To check for errors in a data structures or external data base access. The database updation and retrieval must be done.
To check for initialization and termination errors. All the functions and data structures must be initialized properly and terminated normally.

All the above system testing strategies are carried out in as the development, documentation and institutionalization of the proposed goals and related policies is essential.

CHAPTER 6

6.0 SOFTWARE SPECIFICATION:

6.1 FEATURES OF .NET:

Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script.

The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.

“.NET” is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).

6.2 THE .NET FRAMEWORK

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are

  • Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.
  • Memory management, notably including garbage collection.
  • Checking and enforcing security restrictions on the running code.
  • Loading and executing programs, with version control and other such features.
  • The following features of the .NET framework are also worth description:

Managed Code

The code that targets .NET, and which contains certain extra Information – “metadata” – to describe itself. Whilst both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data

With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications – data that doesn’t get garbage collected but instead is looked after by unmanaged code.

Common Type System

The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.

Common Language Specification

The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

6.3 THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

6.4 LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.

Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.

Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.

C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.  

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.  

Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.

Other languages for which .NET compilers are available include

  • FORTRAN
  • COBOL
  • Eiffel          
            ASP.NET  XML WEB SERVICES    Windows Forms
                         Base Class Libraries
                   Common Language Runtime
                           Operating System

Fig1 .Net Framework

C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.

C#.NET is a CLS-compliant language. Any objects, classes, or components that created in C#.NET can be used in any other CLS-compliant language. In addition, we can use objects, classes, and components created in other CLS-compliant languages in C#.NET .The use of CLS ensures complete interoperability among applications, regardless of the languages used to create the application.

CONSTRUCTORS AND DESTRUCTORS:

Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.

GARBAGE COLLECTION

Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables. In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.

OVERLOADING

Overloading is another feature in C#. Overloading enables us to define multiple procedures with the same name, where each procedure has a different set of arguments. Besides using overloading for procedures, we can use it for constructors and properties in a class.

MULTITHREADING:

C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.

STRUCTURED EXCEPTION HANDLING

C#.NET supports structured handling, which enables us to detect and remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally statements to create exception handlers. Using Try…Catch…Finally statements, we can create robust and effective exception handlers to improve the performance of our application.

6.5 THE .NET FRAMEWORK

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.

OBJECTIVES OF .NET FRAMEWORK

1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

3. Eliminates the performance problems.         

There are different types of application, such as Windows-based applications and Web-based applications. 

6.6 FEATURES OF SQL-SERVER

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services

SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

TABLE:

A database is a collection of data about a specific topic.

VIEWS OF TABLE:

We can work with a table in two types,

1. Design View

2. Datasheet View

Design View

To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.

Datasheet View

To add, edit or analyses the data itself we work in tables datasheet view mode.

QUERY:

A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dynaset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dynaset. Access either displays the dynaset or snapshot for us to view or perform an action on it, such as deleting or updating.

CHAPTER 7

APPENDIX

7.1 SAMPLE SOURCE CODE

7.2 SAMPLE OUTPUT

CHAPTER 8

8.1 CONCLUSION

In this paper, we proposed a new public auditing mechanism for shared data with efficient user revocation in the cloud. When a user in the group is revoked, we allow the semi-trusted cloud to re-sign blocks that were signed by the revoked user with proxy re-signatures. Experimental results show that the cloud can improve the efficiency of user revocation, and existing users in the group can save a significant amount of computation and communication resources during user revocation.

CHAPTER 9

admin

Android Project Ideas

MCA Project Topics

Android Projects Titles

Categories

PHP Project Ideas