Statistics from security firms, research institutions and government organizations show that the numbers of data-leak instances have grown rapidly in recent years. Among various data-leak cases, human mistakes are one of the main causes of data loss. There exist solutions detecting inadvertent sensitive data leaks caused by human mistakes and to provide alerts for organizations. A common approach is to screen content in storage and transmission for exposed sensitive information. Such an approach usually requires the detection operation to be conducted in secrecy. However, this secrecy requirement is challenging to satisfy in practice, as detection servers may be compromised or outsourced.
In this paper, we present a privacy preserving
data-leak detection (DLD) solution to solve the issue where a special set of
sensitive data digests is used in detection. The advantage of our method is
that it enables the data owner to safely delegate the detection operation to a
semihonest provider without revealing the sensitive data to the provider. We
describe how Internet service providers can offer their customers DLD as an
add-on service with strong privacy guarantees. The evaluation results show that
our method can support accurate detection with very small number of false
alarms under various data-leak scenarios.
1.2 INTRODUCTION
According to a report from Risk Based Security (RBS), the number of leaked sensitive data records has increased dramatically during the last few years, i.e., from 412 million in 2012 to 822 million in 2013. Deliberately planned attacks, inadvertent leaks (e.g., forwarding confidential emails to unclassified email accounts), and human mistakes (e.g., assigning the wrong privilege) lead to most of the data-leak incidents. Detecting and preventing data leaks requires a set of complementary solutions, which may include data-leak detection, data confinement, stealthy malware detection and policy enforcement.
Network data-leak detection (DLD) typically performs deep packet inspection (DPI) and searches for any occurrences of sensitive data patterns. DPI is a technique to analyze payloads of IP/TCP packets for inspecting application layer data, e.g., HTTP header/content. Alerts are triggered when the amount of sensitive data found in traffic passes a threshold. The detection system can be deployed on a router or integrated into existing network intrusion detection systems (NIDS). Straightforward realizations of data-leak detection require the plaintext sensitive data.
However, this requirement is undesirable, as it may threaten the confidentiality of the sensitive information. If a detection system is compromised, then it may expose the plaintext sensitive data (in memory). In addition, the data owner may need to outsource the data-leak detection to providers, but may be unwilling to reveal the plaintext sensitive data to them. Therefore, one needs new data-leak detection solutions that allow the providers to scan content for leaks without learning the sensitive information.
In this paper, we propose a data-leak detection solution which can be outsourced and be deployed in a semihonest detection environment. We design, implement, and evaluate our fuzzy fingerprint technique that enhances data privacy during data-leak detection operations. Our approach is based on a fast and practical one-way computation on the sensitive data (SSN records, classified documents, sensitive emails, etc.). It enables the data owner to securely delegate the content-inspection task to DLD providers without exposing the sensitive data. Using our detection method, the DLD provider, who is modeled as an honest-but-curious (aka semi-honest) adversary, can only gain limited knowledge about the sensitive data from either the released digests, or the content being inspected. Using our techniques, an Internet service provider (ISP) can perform detection on its customers’ traffic securely and provide data-leak detection as an add-on service for its customers. In another scenario, individuals can mark their own sensitive data and ask the administrator of their local network to detect data leaks for them.
In our detection procedure, the data owner computes a special set of digests or fingerprints from the sensitive data and then discloses only a small amount of them to the DLD provider. The DLD provider computes fingerprints from network traffic and identifies potential leaks in them. To prevent the DLD provider from gathering exact knowledge about the sensitive data, the collection of potential leaks is composed of real leaks and noises. It is the data owner, who post-processes the potential leaks sent back by the DLD provider and determines whether there is any real data leak.
Our contributions are summarized as follows.
1) We describe a privacy-preserving data-leak detection model for preventing inadvertent data leak in network traffic. Our model supports detection operation delegation and ISPs can provide data-leak detection as an add-on service to their customers using our model. We design, implement, and evaluate an efficient technique, fuzzy fingerprint, for privacy-preserving data-leak detection. Fuzzy fingerprints are special sensitive data digests prepared by the data owner for release to the DLD provider.
2) We implement our detection system and perform extensive experimental evaluation on 2.6 GB Enron dataset, Internet surfing traffic of 20 users, and also 5 simulated real-worlds data-leak scenarios to measure its privacy guarantee, detection rate and efficiency. Our results indicate high accuracy achieved by our underlying scheme with very low false positive rate. Our results also show that the detection accuracy does not degrade much when only partial (sampled) sensitive-data digests are used. In addition, we give an empirical analysis of our fuzzification as well as of the fairness of fingerprint partial disclosure.
1.3 LITRATURE SURVEY
PRIVACY-AWARE COLLABORATIVE SPAM FILTERING
AUTHORS: K. Li, Z. Zhong, and L. Ramaswamy
PUBLISH: IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 5, pp. 725–739, May 2009.
EXPLANATION:
While
the concept of collaboration provides a natural defense against massive spam
e-mails directed at large numbers of recipients, designing effective
collaborative anti-spam systems raises several important research challenges.
First and foremost, since e-mails may contain confidential information, any
collaborative anti-spam approach has to guarantee strong privacy protection to
the participating entities. Second, the continuously evolving nature of spam
demands the collaborative techniques to be resilient to various kinds of
camouflage attacks. Third, the collaboration has to be lightweight, efficient,
and scalable. Toward addressing these challenges, this paper presents ALPACAS-a
privacy-aware framework for collaborative spam filtering. In designing the
ALPACAS framework, we make two unique contributions. The first is a
feature-preserving message transformation technique that is highly resilient
against the latest kinds of spam attacks. The second is a privacy-preserving
protocol that provides enhanced privacy guarantees to the participating
entities. Our experimental results conducted on a real e-mail data set shows
that the proposed framework provides a 10 fold improvement in the false
negative rate over the Bayesian-based Bogofilter when faced with one of the
recent kinds of spam attacks. Further, the privacy breaches are extremely rare.
This demonstrates the strong privacy protection provided by the ALPACAS system.
DATA LEAK DETECTION AS A SERVICE: CHALLENGES AND SOLUTIONS
AUTHORS: X. Shu and D. Yao
PUBLISH: Proc. 8th Int. Conf. Secur. Privacy Commun. Netw., 2012, pp. 222–240
EXPLANATION:
We
describe network-based data-leak detection (DLD) technique, the main feature of
which is that the detection does not require the data owner to reveal the
content of the sensitive data. Instead, only a small amount of specialized
digests are needed. Our technique – referred to as the fuzzy fingerprint – can
be used to detect accidental data leaks due to human errors or application
flaws. The privacy-preserving feature of our algorithms minimizes the exposure
of sensitive data and enables the data owner to safely delegate the detection
to others. We describe how cloud providers can offer their customers data-leak
detection as an add-on service with strong privacy guarantees. We perform
extensive experimental evaluation on the privacy, efficiency, accuracy and
noise tolerance of our techniques. Our evaluation results under various
data-leak scenarios and setups show that our method can support accurate detection
with very small number of false alarms, even when the presentation of the data
has been transformed. It also indicates that the detection accuracy does not
degrade when partial digests are used. We further provide a quantifiable method
to measure the privacy guarantee offered by our fuzzy fingerprint framework.
QUANTIFYING INFORMATION LEAKS IN OUTBOUND WEB TRAFFIC
AUTHORS: K. Borders and A. Prakash
PUBLISH: Proc. 30th IEEE Symp. Secur. Privacy, May 2009, pp. 129–140.
EXPLANATION:
As the Internet grows and network bandwidth continues to
increase, administrators are faced with the task of keeping confidential
information from leaving their networks. Todaypsilas network traffic is so
voluminous that manual inspection would be unreasonably expensive. In response,
researchers have created data loss prevention systems that check outgoing
traffic for known confidential information. These systems stop naive
adversaries from leaking data, but are fundamentally unable to identify
encrypted or obfuscated information leaks. What remains is a high-capacity pipe
for tunneling data to the Internet. We present an approach for quantifying
information leak capacity in network traffic. Instead of trying to detect the
presence of sensitive data-an impossible task in the general case–our goal is
to measure and constrain its maximum volume. We take advantage of the insight
that most network traffic is repeated or determined by external information,
such as protocol specifications or messages sent by a server. By filtering this
data, we can isolate and quantify true information flowing from a computer. In
this paper, we present measurement algorithms for the Hypertext Transfer
Protocol (HTTP), the main protocol for Web browsing. When applied to real Web browsing
traffic, the algorithms were able to discount 98.5% of measured bytes and
effectively isolate information leaks.
CHAPTER 2
2.0 SYSTEM ANALYSIS
2.1 EXISTING SYSTEM:
- Existing detecting and preventing data leaks requires a set of complementary solutions, which may include data-leak detection, data confinement, stealthy malware detection, and policy enforcement.
- Network data-leak detection (DLD) typically performs deep packet inspection (DPI) and searches for any occurrences of sensitive data patterns. DPI is a technique to analyze payloads of IP/TCP packets for inspecting application layer data, e.g., HTTP header/content.
- Alerts are triggered when the amount of sensitive data found in traffic passes a threshold. The detection system can be deployed on a router or integrated into existing network intrusion detection systems (NIDS).
- Straightforward realizations of data-leak detection require the plaintext sensitive data. However, this requirement is undesirable, as it may threaten the confidentiality of the sensitive information. If a detection system is compromised, then it may expose the plaintext sensitive data (in memory).
- In addition, the data owner may need to outsource the data-leak detection to providers, but may be unwilling to reveal the plaintext sensitive data to them. Therefore, one needs new data-leak detection solutions that allow the providers to scan content for leaks without learning the sensitive information.
2.1.1 DISADVANTAGES:
- As the Internet grows and network bandwidth continues to increase, administrators are faced with the task of keeping confidential information from leaving their networks. In response, researchers have created data loss prevention systems that check outgoing traffic for known confidential information.
- These systems stop naive adversaries from leaking data, but are fundamentally unable to identify encrypted or obfuscated information leaks. What remains is a high-capacity pipe for tunneling data to the Internet.
- Existing approach for quantifying information leak capacity in network traffic instead of trying to detect the presence of sensitive data-an impossible task in the general case–our goal is to measure and constrain its maximum volume.
- We take disadvantage of the
insight that most network traffic is repeated or determined by external
information, such as protocol specifications or messages sent by a server. By
filtering this data, we can isolate and quantify true information flowing from
a computer.
2.2 PROPOSED SYSTEM:
- We propose a data-leak detection solution which can be outsourced and be deployed in a semihonest detection environment. We design, implement, and evaluate our fuzzy fingerprint technique that enhances data privacy during data-leak detection operations.
- Our approach is based on a fast and practical one-way computation on the sensitive data (SSN records, classified documents, sensitive emails, etc.). It enables the data owner to securely delegate the content-inspection task to DLD providers without exposing the sensitive data.
- Our detection method, the DLD provider, who is modeled as an honest-but-curious (aka semi-honest) adversary, can only gain limited knowledge about the sensitive data from either the released digests, or the content being inspected. Using our techniques, an Internet service provider (ISP) can perform detection on its customers’ traffic securely and provide data-leak detection as an add-on service for its customers. In another scenario, individuals can mark their own sensitive data and ask the administrator of their local network to detect data leaks for them.
- Our detection procedure, the data owner computes a special set of digests or fingerprints from the sensitive data and then discloses only a small amount of them to the DLD provider. The DLD provider computes fingerprints from network traffic and identifies potential leaks in them.
- To prevent the DLD provider from gathering exact knowledge about the sensitive data, the collection of potential leaks is composed of real leaks and noises. It is the data owner, who post-processes the potential leaks sent back by the DLD provider and determines whether there is any real data leak.
2.2.1 ADVANTAGES:
- We describe privacy-preserving data-leak detection model for preventing inadvertent data leak in network traffic. Our model supports detection operation delegation and ISPs can provide data-leak detection as an add-on service to their customers using our model.
- We design, implement, and evaluate an efficient technique, fuzzy fingerprint, for privacy-preserving data-leak detection. Fuzzy fingerprints are special sensitive data digests prepared by the data owner for release to the DLD provider.
- We implement our detection system and perform extensive experimental evaluation on internet surfing traffic of 20 users, and also 5 simulated real-worlds data-leak scenarios to measure its privacy guarantee, detection rate and efficiency.
- Our results indicate high accuracy achieved
by our underlying scheme with very low false positive rate. Our results also
show that the detection accuracy does not degrade much when only partial
(sampled) sensitive-data digests are used an empirical analysis of our
fuzzification as well as of the fairness of fingerprint partial disclosure.
2.3 HARDWARE & SOFTWARE REQUIREMENTS:
2.3.1 HARDWARE REQUIREMENT:
v Processor – Pentium –IV
- Speed –
1.1 GHz
- RAM – 256 MB (min)
- Hard Disk – 20 GB
- Floppy Drive – 1.44 MB
- Key Board – Standard Windows Keyboard
- Mouse – Two or Three Button Mouse
- Monitor – SVGA
2.3.2 SOFTWARE REQUIREMENTS:
- Operating System : Windows XP or Win7
- Front End : Microsoft Visual Studio .NET
- Back End : MS-SQL Server
- Server : ASP .NET Web Server
- Script : C# Script
- Document : MS-Office 2007
CHAPTER 3
3.0 SYSTEM DESIGN:
Data Flow Diagram / Use Case Diagram / Flow Diagram:
- The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to represent a system in terms of the input data to the system, various processing carried out on these data, and the output data is generated by the system
- The data flow diagram (DFD) is one of the most important modeling tools. It is used to model the system components. These components are the system process, the data used by the process, an external entity that interacts with the system and the information flows in the system.
- DFD shows how the information moves through the system and how it is modified by a series of transformations. It is a graphical technique that depicts information flow and the transformations that are applied as data moves from input to output.
- DFD is also known as bubble chart. A DFD may be used to represent a system at any level of abstraction. DFD may be partitioned into levels that represent increasing information flow and functional detail.
NOTATION:
SOURCE OR DESTINATION OF DATA:
External sources or destinations, which may be people or organizations or other entities
DATA SOURCE:
Here the data referenced by a process is stored and retrieved.
PROCESS:
People, procedures or devices that produce data’s in the physical component is not identified.
DATA FLOW:
Data moves in a
specific direction from an origin to a destination. The data flow is a “packet”
of data.
There are several common modeling rules when creating DFDs:
- All processes must have at least one data flow in and one data flow out.
- All processes should modify the incoming data, producing new forms of outgoing data.
- Each data store must be involved with at least one data flow.
- Each external entity must be involved with at least one data flow.
- A data flow must be attached to at least one process.
3.2 DATAFLOW DIAGRAM
UML DIAGRAMS:
3.2
USE CASE DIAGRAM:
3.3 CLASS DIAGRAM:
3.4
SEQUENCE DIAGRAM:
3.5
ACTIVITY DIAGRAM:
CHAPTER 4
4.0 IMPLEMENTATION:
FUZZY FINGERPRINT METHOD AND PROTOCOL
We describe technical details of our fuzzy fingerprint mechanism in this section. The DLD provider obtains digests of sensitive data from the data owner. The data owner uses a sliding window and Rabin fingerprint algorithm to generate short and hard to-reverse (i.e., one-way) digests through the fast polynomial modulus operation. The sliding window generates small fragments of the processed data (sensitive data or network traffic), which preserves the local features of the data and provides the noise tolerance property. Rabin fingerprints are computed as polynomial modulus operations, and can be implemented with fast XOR, shift, and table look-up operations.
The Rabin fingerprint algorithm has a unique min-wise independence property, which supports fast random fingerprints selection (in uniform distribution) for partial fingerprints disclosure. The shingle-and-fingerprint process is defined as follows. A sliding window is used to generate q-grams on an input binary string first. The fingerprints of q-grams are then computed. A shingle (q-gram) is a fixed-size sequence of contiguous bytes. For example, the 3-gram shingle set of string abcdefgh consists of six elements {abc, bcd, cde, def, efg, fgh}. Local feature preservation is accomplished through the use of shingles. Therefore, our approach can tolerate sensitive data modification to some extent, e.g., inserted tags, small amount of character substitution, and lightly reformatted data.
From the detection perspective, a straightforward method is for the DLD provider to raise an alert if any sensitive fingerprint matches the fingerprints from the traffic.1 However, this approach has a privacy issue. If there is a data leak, there is a match between two fingerprints from sensitive data and network traffic. Then, the DLD provider learns the corresponding shingle, as it knows the content of the packet. Therefore, the central challenge is to prevent the DLD provider from learning the sensitive values even in data-leak scenarios, while allowing the provider to carry out the traffic inspection.
We
propose an efficient technique to address this problem. The main idea is to
relax the comparison criteria by strategically introducing matching instances
on the DLD provider’s side without increasing false alarms for the data owner.
Specifically, i) the data owner perturbs the sensitive-data fingerprints before
disclosing them to the DLD provider, and ii) the DLD provider detects leaking
by a range-based comparison instead of the exact match. The range used in the
comparison is pre-defined by the data owner and correlates to the perturbation
procedure.
4.2 MODULES:
NETWORK SECURITY PRIVACY:
SECURITY GOAL AND THREAT MODEL:
PRIVACY GOAL AND THREAT MODEL:
PRIVACY-ENHANCING DLD:
EXPERIMENTAL EVALUATION
4.3 MODULE DESCRIPTION:
NETWORK SECURITY PRIVACY:
Network-accessible resources may be deployed in a network as surveillance and early-warning tools, as the detection of attackers are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the data’s. Data forwarding can also direct an attacker’s attention away from legitimate servers. A user encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a server, a user is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker’s methods can be studied and that information can be used to increase network security.
SECURITY GOAL AND THREAT MODEL:
We categorize three causes for sensitive data to appear on the outbound traffic of an organization, including the legitimate data use by the employees.
• Case
I Inadvertent data leak: The sensitive data is accidentally leaked in the
outbound traffic by a legitimate user. This paper focuses on detecting this
type of accidental data leaks over supervised network channels. Inadvertent
data leak may be due to human errors such as forgetting to use encryption,
carelessly forwarding an internal email and attachments to outsiders or due to
application flaws (such as described in a supervised network channel could be
an unencrypted channel or an encrypted channel where the content in it can be
extracted and checked by an authority. Such a channel is widely used for
advanced NIDS where MITM (man-in-the-middle) SSL sessions are established
instead of normal SSL sessions.
• Case II Malicious data leak: A rogue insider or a piece of stealthy software may steal sensitive personal or organizational data from a host. Because the malicious adversary can use strong private encryption, steganography or covert channels to disable content-based traffic inspection, this type of leaks is out of the scope of our network-based solution host-based defenses (such as detecting the infection onset need to be deployed instead.
• Case III Legitimate and intended data transfer: The sensitive data is sent by a legitimate user intended for legitimate purposes. In this paper, we assume that the data owner is aware of legitimate data transfers and permits such transfers. So the data owner can tell whether a piece of sensitive data in the network traffic is a leak using legitimate data transfer policies.
PRIVACY GOAL AND THREAT MODEL:
DLD provider from gaining knowledge of sensitive data during the detection process, we need to set up a privacy goal that is complementary to the security goal above. We model the DLD provider as a semi-honest adversary, who follows our protocol to carry out the operations, but may attempt to gain knowledge about the sensitive data of the data owner. Our privacy goal is defined as follows. The DLD provider is given digests of sensitive data from the data owner and the content of network traffic to be examined. The DLD provider should not find out the exact value of a piece of sensitive data with a probability greater than 1 K, where K is an integer representing the number of all possible sensitive-data candidates that can be inferred by the DLD provider. We present a privacy-preserving DLD model with a new fuzzy fingerprint mechanism to improve the data protection against semi-honest DLD provider. We generate digests of sensitive data through a one-way function, and then hide the sensitive values among other non-sensitive values via fuzzification. The privacy guarantee of such an approach is much higher than 1 K when there is no leak in traffic, because the adversary’s inference can only be gained through brute-force guesses. The traffic content is accessible by the DLD provider in plaintext. Therefore, in the event of a data leak, the DLD provider may learn sensitive information from the traffic, which is inevitable for all deep packet inspection approaches. Our solution confines the amount of maximal information learned during the detection and provides quantitative guarantee for data privacy.
PRIVACY-ENHANCING DLD:
Our privacy-preserving data-leak detection method supports practical data-leak detection as a service and minimizes the knowledge that a DLD provider may gain during the process. Fig. 1 lists the six operations executed by the data owner and the DLD provider in our protocol. They include PREPROCESS run by the data owner to prepare the digests of sensitive data, RELEASE for the data owner to send the digests to the DLD provider, MONITOR and DETECT for the DLD provider to collect outgoing traffic of the organization, compute digests of traffic content, and identify potential leaks, REPORT for the DLD provider to return data-leak alerts to the data owner where there may be false positives (i.e., false alarms), and POSTPROCESS for the data owner to pinpoint true data-leak instances. Details are presented in the next section. The protocol is based on strategically computing data similarity, specifically the quantitative similarity between the sensitive information and the observed network traffic. High similarity indicates potential data leak. For data-leak detection, the ability to tolerate a certain degree of data transformation in traffic is important. We refer to this property as noise tolerance.
Our key
idea for fast and noise-tolerant comparison is the design and use of a set of
local features that are representatives of local data patterns, e.g., when byte
b2 appears in the sensitive data, it is usually surrounded by bytes b1 and b3
forming a local pattern b1, b2, b3. Local features preserve data patterns even
when modifications (insertion, deletion, and substitution) are made to parts of
the data. For example, if a byte b4 is inserted after b3, the local pattern b1,
b2, b3 is retained though the global pattern (e.g., a hash of the entire
document) is destroyed. To achieve the privacy goal, the data owner generates a
special type of digests, which we call fuzzy fingerprints. Intuitively, the
purpose of fuzzy fingerprints is to hide the true sensitive data in a crowd. It
prevents the DLD provider from learning its exact value. We describe the
technical details next.
EXPERIMENTAL EVALUATION:
Our data-leak detection solution can be outsourced and be deployed in a fuzzy fingerprint technique that enhances data privacy during data-leak detection operations. Our approach is based on a fast and practical one-way computation on the sensitive data (SSN records, classified documents, sensitive emails, etc.). It enables the data owner to securely delegate the content-inspection task to DLD providers without exposing the sensitive data. Using our detection method, the DLD provider, who is modeled as an honest-but-curious (aka semi-honest) adversary, can only gain limited knowledge about the sensitive data from either the released digests, or the content being inspected.
Using our techniques, an Internet service provider (ISP) can perform detection on its customers’ traffic securely and provide data-leak detection as an add-on service for its customers. Our fuzzy fingerprint framework in Python, including packet collection, shingling, Rabin fingerprinting, as well as partial disclosure and fingerprint filter extensions Rabin fingerprint is based on cyclic redundancy code (CRC). We use the padding scheme mentioned in to handle small inputs. In all experiments, the shingles are in 8-byte, and the fingerprints are in 32-bit (33-bit irreducible polynomials in Rabin fingerprint).
We set
up a networking environment in VirtualBox, and make a scenario where the
sensitive data is leaked from a local network to the Internet. Multiple users’
hosts (Windows 7) are put in the local network, which connect to the Internet
via a gateway (Fedora). Multiple servers (HTTP, FTP, etc.) and an
attacker-controlled host are put on the Internet side. The gateway dumps the
network traffic and sends it to a DLD server/provider (Linux). Using the
sensitive-data fingerprints defined by the users in the local network, the DLD
server performs off-line data-leak detection.
CHAPTER 5
5.0 SYSTEM STUDY:
5.1 FEASIBILITY STUDY:
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.
Three key considerations involved in the feasibility analysis are
- ECONOMICAL FEASIBILITY
- TECHNICAL FEASIBILITY
- SOCIAL FEASIBILITY
5.1.1 ECONOMICAL FEASIBILITY:
This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.
5.1.2 TECHNICAL FEASIBILITY:
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.
5.1.3 SOCIAL FEASIBILITY:
The aspect of study is to check the level of
acceptance of the system by the user. This includes the process of training the
user to use the system efficiently. The user must not feel threatened by the
system, instead must accept it as a necessity. The level of acceptance by the
users solely depends on the methods that are employed to educate the user about
the system and to make him familiar with it. His level of confidence must be
raised so that he is also able to make some constructive criticism, which is
welcomed, as he is the final user of the system.
5.2 SYSTEM TESTING:
Testing is a process of checking whether the developed system is working according to the original objectives and requirements. It is a set of activities that can be planned in advance and conducted systematically. Testing is vital to the success of the system. System testing makes a logical assumption that if all the parts of the system are correct, the global will be successfully achieved. In adequate testing if not testing leads to errors that may not appear even many months. This creates two problems, the time lag between the cause and the appearance of the problem and the effect of the system errors on the files and records within the system. A small system error can conceivably explode into a much larger Problem. Effective testing early in the purpose translates directly into long term cost savings from a reduced number of errors. Another reason for system testing is its utility, as a user-oriented vehicle before implementation. The best programs are worthless if it produces the correct outputs.
5.2.1 UNIT TESTING:
A program represents the
logical elements of a system. For a program to run satisfactorily, it must
compile and test data correctly and tie in properly with other programs.
Achieving an error free program is the responsibility of the programmer.
Program testing checks
for two types
of errors: syntax
and logical. Syntax error is a
program statement that violates one or more rules of the language in which it
is written. An improperly defined field dimension or omitted keywords are common
syntax errors. These errors are shown through error message generated by the
computer. For Logic errors the programmer must examine the output carefully.
UNIT TESTING:
Description | Expected result |
Test for application window properties. | All the properties of the windows are to be properly aligned and displayed. |
Test for mouse operations. | All the mouse operations like click, drag, etc. must perform the necessary operations without any exceptions. |
5.1.3 FUNCTIONAL TESTING:
Functional testing of an
application is used to prove the application delivers correct results, using
enough inputs to give an adequate level of confidence that will work correctly
for all sets of inputs. The functional testing will need to prove that the
application works for each client type and that personalization function work
correctly.When a program is tested, the actual output is compared with
the expected output. When there is a discrepancy the sequence of instructions
must be traced to determine the problem.
The process is facilitated by breaking the program into self-contained
portions, each of which can be checked at certain key points. The idea is to
compare program values against desk-calculated values to isolate the problems.
FUNCTIONAL TESTING:
Description | Expected result |
Test for all modules. | All peers should communicate in the group. |
Test for various peer in a distributed network framework as it display all users available in the group. | The result after execution should give the accurate result. |
5.1. 4 NON-FUNCTIONAL TESTING:
The Non Functional software testing encompasses a rich spectrum of testing strategies, describing the expected results for every test case. It uses symbolic analysis techniques. This testing used to check that an application will work in the operational environment. Non-functional testing includes:
- Load testing
- Performance testing
- Usability testing
- Reliability testing
- Security testing
5.1.5 LOAD TESTING:
An important tool for implementing system tests is a Load generator. A Load generator is essential for testing quality requirements such as performance and stress. A load can be a real load, that is, the system can be put under test to real usage by having actual telephone users connected to it. They will generate test input data for system test.
Load Testing
Description | Expected result |
It is necessary to ascertain that the application behaves correctly under loads when ‘Server busy’ response is received. | Should designate another active node as a Server. |
5.1.5 PERFORMANCE TESTING:
Performance tests are
utilized in order to determine the widely defined performance of the software
system such as execution time associated with various parts of the code,
response time and device utilization. The intent of this testing is to identify
weak points of the software system and quantify its shortcomings.
PERFORMANCE TESTING:
Description | Expected result |
This is required to assure that an application perforce adequately, having the capability to handle many peers, delivering its results in expected time and using an acceptable level of resource and it is an aspect of operational management. | Should handle large input values, and produce accurate result in a expected time. |
5.1.6 RELIABILITY TESTING:
The software reliability
is the ability of a system or component to perform its required functions under
stated conditions for a specified period of time and it is being ensured in
this testing. Reliability can be expressed as the ability of the software to
reveal defects under testing conditions, according to the specified
requirements. It the portability that a software system will operate without
failure under given conditions for a given time interval and it focuses on the
behavior of the software element. It forms a part of the software quality
control team.
RELIABILITY TESTING:
Description | Expected result |
This is to check that the server is rugged and reliable and can handle the failure of any of the components involved in provide the application. | In case of failure of the server an alternate server should take over the job. |
5.1.7 SECURITY TESTING:
Security testing evaluates
system characteristics that relate to the availability, integrity and
confidentiality of the system data and services. Users/Clients should be
encouraged to make sure their security needs are very clearly known at
requirements time, so that the security issues can be addressed by the
designers and testers.
SECURITY TESTING:
Description | Expected result |
Checking that the user identification is authenticated. | In case failure it should not be connected in the framework. |
Check whether group keys in a tree are shared by all peers. | The peers should know group key in the same group. |
5.1.7 WHITE BOX TESTING:
White box
testing, sometimes called glass-box
testing is a test case
design method that uses
the control structure
of the procedural design to
derive test cases. Using
white box testing
method, the software engineer
can derive test
cases. The White box testing focuses on the inner structure of the
software structure to be tested.
5.1.8 WHITE BOX TESTING:
Description | Expected result |
Exercise all logical decisions on their true and false sides. | All the logical decisions must be valid. |
Execute all loops at their boundaries and within their operational bounds. | All the loops must be finite. |
Exercise internal data structures to ensure their validity. | All the data structures must be valid. |
5.1.9 BLACK BOX TESTING:
Black box testing, also
called behavioral testing, focuses on the functional requirements of the
software. That is,
black testing enables
the software engineer to derive
sets of input
conditions that will
fully exercise all
functional requirements for a
program. Black box testing is not
alternative to white box techniques.
Rather it is
a complementary approach that
is likely to
uncover a different class
of errors than
white box methods. Black box
testing attempts to find errors which focuses on inputs, outputs, and principle
function of a software module. The starting point of the black box testing is
either a specification or code. The contents of the box are hidden and the
stimulated software should produce the desired results.
5.1.10 BLACK BOX TESTING:
Description | Expected result |
To check for incorrect or missing functions. | All the functions must be valid. |
To check for interface errors. | The entire interface must function normally. |
To check for errors in a data structures or external data base access. | The database updation and retrieval must be done. |
To check for initialization and termination errors. | All the functions and data structures must be initialized properly and terminated normally. |
All
the above system testing strategies are carried out in as the development,
documentation and institutionalization of the proposed goals and related
policies is essential.
CHAPTER 7
7.0 SOFTWARE SPECIFICATION:
7.1 FEATURES OF .NET:
Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script.
The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.
“.NET” is
also the collective name given to various software components built upon the
.NET platform. These will be both products (Visual Studio.NET and Windows.NET
Server, for instance) and services (like Passport, .NET My Services, and so
on).
7.2 THE .NET FRAMEWORK
The .NET Framework has two main parts:
1. The Common Language Runtime (CLR).
2. A hierarchical set of class libraries.
The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are
- Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.
- Memory management, notably including garbage collection.
- Checking and enforcing security restrictions on the running code.
- Loading and executing programs, with version control and other such features.
- The following features of the .NET framework are also worth description:
Managed Code
The code
that targets .NET, and which contains certain extra Information – “metadata” –
to describe itself. Whilst both managed and unmanaged code can run in the
runtime, only managed code contains the information that allows the CLR to
guarantee, for instance, safe execution and interoperability.
Managed Data
With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications – data that doesn’t get garbage collected but instead is looked after by unmanaged code.
Common Type System
The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.
Common Language Specification
The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.
7.3 THE CLASS LIBRARY
.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.
The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.
The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.
7.4 LANGUAGES SUPPORTED BY .NET
The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.
Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.
Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.
Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.
C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.
Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.
Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.
Other languages for which .NET compilers are available include
- FORTRAN
- COBOL
- Eiffel
ASP.NET XML WEB SERVICES | Windows Forms |
Base Class Libraries | |
Common Language Runtime | |
Operating System |
Fig1 .Net Framework
C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.
C#.NET is
a CLS-compliant language. Any objects, classes, or components that created in
C#.NET can be used in any other CLS-compliant language. In addition, we can use
objects, classes, and components created in other CLS-compliant languages in
C#.NET .The use of CLS ensures complete interoperability among applications,
regardless of the languages used to create the application.
CONSTRUCTORS AND DESTRUCTORS:
Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.
GARBAGE COLLECTION
Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables. In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.
In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.
OVERLOADING
Overloading is another feature in C#. Overloading enables us
to define multiple procedures with the same name, where each procedure has a
different set of arguments. Besides using overloading for procedures, we can
use it for constructors and properties in a class.
MULTITHREADING:
C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.
STRUCTURED EXCEPTION HANDLING
C#.NET supports structured handling, which enables us to
detect and remove errors at runtime. In C#.NET, we need to use
Try…Catch…Finally statements to create exception handlers. Using
Try…Catch…Finally statements, we can create robust and effective exception
handlers to improve the performance of our application.
7.5 THE .NET FRAMEWORK
The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.
OBJECTIVES OF .NET FRAMEWORK
1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.
2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.
3. Eliminates the performance problems.
There are
different types of application, such as Windows-based applications and Web-based
applications.
7.6 FEATURES OF SQL-SERVER
The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services
SQL-SERVER database consist of six type of objects,
They are,
1. TABLE
2. QUERY
3. FORM
4. REPORT
5.
MACRO
7.7 TABLE:
A database is a collection of data about a specific topic.
VIEWS OF TABLE:
We can work with a table in two types,
1. Design View
2. Datasheet View
Design View
To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.
Datasheet View
To add, edit or analyses the data itself we work in tables datasheet view mode.
QUERY:
A query is
a question that has to be asked the data. Access gathers data that answers the
question from one or more table. The data that make up the answer is either
dynaset (if you edit it) or a snapshot (it cannot be edited).Each time we run
query, we get latest information in the dynaset. Access either displays the
dynaset or snapshot for us to view or perform an action on it, such as deleting
or updating.
CHAPTER 7
APPENDIX
7.1 SAMPLE SOURCE CODE
7.2 SAMPLE OUTPUT
CHAPTER 8
8.1 CONCLUSION
Our fuzzy fingerprint method differs from these solutions and enables its adopter to provide dataleak detection as a service. The customer or data owner does not need to fully trust the DLD provider using our approach. Bloom filter is a space-saving data structure for set membership test, and it is used in network security from network layer in the fuzzy Bloom filter invented in constructs a special Bloom filter that probabilistically sets the corresponding filter bits to 1’s. We designed to support a resource-sufficient routing scheme; it is a potential privacy-preserving technique. We do not invent a variant of Bloom filter for our fuzzy fingerprint, and our fuzzification process is separate from membership test. The advantage of separating fingerprint fuzzification from membership test is that it is flexible to test whether the fingerprint is sensitive with or without fuzzification
Our
fuzzy fingerprint solution for data-leak detection, there are other
privacy-preserving techniques invented for specific processes, e.g., DATA
matching or for general purpose use, e.g., secure multi-party computation
(SMC). SMC is a cryptographic mechanism, which supports a wide range of fundamental
arithmetic, set, and string operations as well as complex functions such as
knapsack computation, automated trouble-shooting, network event statistics,
private information retrieval, genomic computation, private database query,
private join operations and distributed data mining. The provable privacy
guarantees offered by SMC comes at a cost in terms of computational complexity
and realization difficulty. The advantage of our approach is its concision and
efficiency.
8.2 FUTURE ENHANCEMENT:
We
proposed fuzzy fingerprint, a privacy-preserving data-leak detection model and
present its realization. Using special digests, the exposure of the sensitive
data is kept to a minimum during the detection. We have conducted extensive experiments
to validate the accuracy, privacy, and efficiency of our solutions. For future
work, we plan to focus on designing a host-assisted mechanism for the complete
data-leak detection for large-scale organizations.