Comparative Study Of Heart Disease Classification

0.00

Categories: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Description

Comparative Study Of Heart Disease Classification

The aim of this paper is to compare two important machine learning platform results for the same dataset. Comparative Study Of Heart Disease Classification With this aim, we conducted an experiment to classify heart disease both in Matlab© environment and WEKA©, by using six different algorithms. Linear SVM, Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Decision Tree and Ensemble Subspace Discriminant machine learning approaches are used for classifying the heart disease. big-data-analytics-projects-topics-2018