CHAPTER 1
1.1 ABSTRACT:
As one of the important members of Internet of Things (IoT), vehicles have seen steep advancement in communication technology. With the advent of Vehicular Ad-Hoc Networks (VANETs), vehicles now can evolve into social interactions to share safety, efficiency, and comfort related messages with other vehicles. In this paper, we study vehicular social network from Social Internet of Things (SIoT) perspective and propose VeDi, a vehicular crowd-sourced video social network for VANETs.When a user shares a video in the VeDi, it can be accessed by other surrounding vehicles. Any social interaction (e.g. view, comment, like) with the video on the roadway are stored in the social network cloud along with the video itself.
In VeDi,
every vehicle maintains a list of video related metadata (e.g. blur and
shakiness) of available videos which are used to selectively retrieve quality videos
by surrounding vehicles. We also present a method to determine representative
quality scores for an entire video clip using blur and shakiness values. The
prototype implementations and experimental results denote that the proposed
system can be a viable option to create video social networks such as youtube, vine,
and vimeo by employing vehicular crowd.
1.2 INTRODUCTION
State-of-the-art vehicles are equipped with advanced technologies that enable them to communicate with nearby vehicles by forming vehicular ad-hoc networks (VANETs). There has been growing interest in building a social network of vehicles that can ensure safety of the driver and passengers, and also improve travel efficiency through collaborative application. While main purpose of VANETs is safety and efficiency, there is plenty of room in the allocated bandwidth for comfort applications as well. In this work we study vehicular social network from video sharing perspective. We propose VeDi, a crowd sourced video social network over VANETs. We envision it to be integrated part of future vehicular social network and eventually Internet of Things.
The distribution of multimedia content
over vehicular networks is a challenging task for several reasons such as
network partitioning due to nodes mobility, and medium contention due to
broadcasting nature of the technology. Therefore users cannot browse through
all the videos. In VeDi, OBUs automatically calculate metadata
description of video through content processing. This metadata description is
shared among other OBUs through a Dedicated Short Range Communication (DSRC1)
type message called tNote. Furthermore, it is difficult for the users to
comprehend quality of complete video from individual frame quality. We
experimentally analyse mobile recorded short video clips and find
representative blur and shakiness scores for the entire video. The main
contributions of the paper are two-fold: an architecture of crowd sourced video
social network and quality based metadata description of videos.
1.3 LITRATURE SURVEY
AUTHOR AND PUBLICATION: N. Abbani, M. Jomaa, T. Tarhini, H. Artail, and W. El-Hajj. MANAGING SOCIAL NETWORKS IN VEHICULAR NETWORKS USING TRUST RULES. In Wireless Technology and Applications (ISWTA), 2011 IEEE Symposium on, pages 168–173, Sept 2011.
EXPLANATION:
Drivers and passengers
in urban areas may spend large portion of their time waiting in their cars on
the road while commuting to and from work, to school, or to the supermarket.
Regularities of driving patterns in time and in space motivate the formation of
communities of common backgrounds and interests. We propose a model for forming
and maintaining Vehicular Social Networks (VSNs) that uses trust principles for
admission to social groups, and controlling the interactions among members.
This paper describes the details of the design, and proposes a simple but
representative probabilistic model for deriving the probability of wrongful
admissions and the probability of an agent trusting a malicious node. The
experimental results, which were obtained from simulations using the network
simulation software ns2, describe metrics related to the dynamics of group
formation and time to form groups as well as to detecting malicious members.
Our system was able to form social groups with agents of common interests and
maintain an accurate trust evaluation of their behavior.
AUTHOR AND PUBLICATION: M. Asefi, J. W. Mark, and X. Shen. AN APPLICATION-CENTRIC INTER-VEHICLE ROUTING PROTOCOL FOR VIDEO STREAMING OVER MULTI-HOP URBAN VANETS. In Communications (ICC), 2011 IEEE International Conference on, pages 1–5. IEEE, 2011.
EXPLANATION:
Service-oriented
vehicular networks face challenge to deliver delay-sensitive data such as video
packets. Most research on video streaming consider network-centric quality of
service (QoS) metrics rather than the user perceived quality. In this paper, we
propose an application-centric routing framework for real-time video
transmission over urban multi-hop vehicular ad-hoc network (VANET) scenarios.
Queueing based mobility model, spatial traffic distribution and probability of
connectivity for sparse and dense VANET scenarios are taken into consideration
in designing the routing protocol. The numerical results demonstrate the gain
achieved by the proposed routing protocol versus geographic greedy forwarding
in terms of video frame distortion and streaming start-up delay in several
urban communication scenarios for various vehicle entrance rate and traffic
densities.
AUTHOR AND PUBLICATION: M. Asefi, J. W. Mark, and X. Shen. A MOBILITY-AWARE AND QUALITYDRIVEN RETRANSMISSION LIMIT ADAPTATION SCHEME FOR VIDEO STREAMING OVER VANETS. Wireless Communications, IEEE Transactions on, 11(5):1817– 1827, 2012.
EXPLANATION:
An adaptive medium
access control (MAC) retransmission limit selection scheme is proposed to
improve the performance of IEEE 802.11p standard MAC protocol for video
streaming applications over vehicular ad-hoc networks (VANETs). A
multi-objective optimization framework, which jointly minimizes the probability
of playback freezes and start-up delay of the streamed video at the destination
vehicle by tuning the MAC retransmission limit with respect to channel
statistics as well as packet transmission rate, is applied at road side unit
(RSU). Periodic channel state estimation is performed at the RSU using the information
derived from the received signal strength (RSS) and Doppler shift effect.
Estimates of access probability between the RSU and the destination vehicle is
incorporated in the design of the adaptive MAC scheme. The adaptation
parameters are embedded in the user datagram protocol (UDP) packet header.
Two-hop transmission is applied in zones in which the destination vehicle is
not within the transmission range of any RSU. For multi-hop scenario, we
discuss two-hop joint MAC retransmission adaptation and path selection.
Compared with the non-adaptive IEEE 802.11p standard MAC, numerical results
show that the proposed adaptive MAC protocol exhibits significantly fewer
playback freezes while introduces only a slight increase in start-up delay.
AUTHOR AND PUBLICATION: L. Atzori, A. Iera, and G. Morabito. SIOT: GIVING A SOCIAL STRUCTURE TO THE INTERNET OF THINGS. Communications Letters, IEEE, 15(11):1193–1195, 2011.
EXPLANATION:
The actual development
of the Internet of Things (IoT) needs major issues related to things’ service
discovery and composition to be addressed. This paper proposes a possible
approach to solve such issues. We introduce a novel paradigm of “social
network of intelligent objects”, namely the Social Internet of Things (SIoT),
based on the notion of social relationships among objects. Following the
definition of a possible social structure among objects, a preliminary
architecture for the implementation of SIoT is presented. Through the SIoT
paradigm, the capability of humans and devices to discover, select, and use
objects with their services in the IoT is augmented. Besides, a level of
trustworthiness is enabled to steer the interaction among the billions of
objects which will crowd the future IoT.
CHAPTER 2
2.0 SYSTEM ANALYSIS
2.1 EXISTING SYSTEM:
2.1.1 DISADVANTAGES:
2.2 PROPOSED SYSTEM:
2.2.1
ADVANTAGES:
2.3.1 HARDWARE REQUIREMENT:
JAVA
.NET
CHAPTER 3
3.0 SYSTEM DESIGN:
Data Flow Diagram / Use Case Diagram / Flow Diagram:
External sources or destinations, which may be people or organizations or other entities
Here the data referenced by a process is stored and retrieved.
People, procedures or devices that produce data’s in the physical component is not identified.
Data moves in a specific direction from an origin to a destination. The data flow is a “packet” of data.
MODELING RULES:
There are several common modeling rules when creating DFDs:
SYSTEM DESIGN 🙁 user)
User Case Diagram
Class Diagram
Activity Diagram
Sequence Diagram
CHAPTER 4
4.0 IMPLEMENTATION:
4.1 ALGORITHM
4.2 MODULES:
4.3
MODULE DESCRIPTION:
CHAPTER 5
5.0 SYSTEM STUDY:
5.1 FEASIBILITY STUDY:
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.
Three key considerations involved in the feasibility analysis are
5.1.1 ECONOMICAL FEASIBILITY:
This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.
5.1.3 SOCIAL FEASIBILITY:
The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.
5.2 SYSTEM TESTING:
Testing is a process of checking whether the developed system is working according to the original objectives and requirements. It is a set of activities that can be planned in advance and conducted systematically. Testing is vital to the success of the system. System testing makes a logical assumption that if all the parts of the system are correct, the global will be successfully achieved. In adequate testing if not testing leads to errors that may not appear even many months.
This creates two problems, the time lag
between the cause and the appearance of the problem and the effect of the
system errors on the files and records within the system. A small system error
can conceivably explode into a much larger Problem. Effective testing early in
the purpose translates directly into long term cost savings from a reduced
number of errors. Another reason for system testing is its utility, as a
user-oriented vehicle before implementation. The best programs are worthless if
it produces the correct outputs.
5.2.1 UNIT TESTING:
Description | Expected result |
Test for application window properties. | All the properties of the windows are to be properly aligned and displayed. |
Test for mouse operations. | All the mouse operations like click, drag, etc. must perform the necessary operations without any exceptions. |
A program
represents the logical elements of a system. For a program to run satisfactorily,
it must compile and test data correctly and tie in properly with other
programs. Achieving an error free program is the responsibility of the
programmer. Program testing checks
for two types
of errors: syntax
and logical. Syntax error is a
program statement that violates one or more rules of the language in which it
is written. An improperly defined field dimension or omitted keywords are
common syntax errors. These errors are shown through error message generated by
the computer. For Logic errors the programmer must examine the output
carefully.
5.1.2 FUNCTIONAL TESTING:
Functional testing of an application is used to prove the application delivers correct results, using enough inputs to give an adequate level of confidence that will work correctly for all sets of inputs. The functional testing will need to prove that the application works for each client type and that personalization function work correctly.When a program is tested, the actual output is compared with the expected output. When there is a discrepancy the sequence of instructions must be traced to determine the problem. The process is facilitated by breaking the program into self-contained portions, each of which can be checked at certain key points. The idea is to compare program values against desk-calculated values to isolate the problems.
Description | Expected result |
Test for all modules. | All peers should communicate in the group. |
Test for various peer in a distributed network framework as it display all users available in the group. | The result after execution should give the accurate result. |
5.1. 3 NON-FUNCTIONAL TESTING:
The Non Functional software testing encompasses a rich spectrum of testing strategies, describing the expected results for every test case. It uses symbolic analysis techniques. This testing used to check that an application will work in the operational environment. Non-functional testing includes:
5.1.4 LOAD TESTING:
An important tool for implementing system tests is a Load generator. A Load generator is essential for testing quality requirements such as performance and stress. A load can be a real load, that is, the system can be put under test to real usage by having actual telephone users connected to it. They will generate test input data for system test.
Description | Expected result |
It is necessary to ascertain that the application behaves correctly under loads when ‘Server busy’ response is received. | Should designate another active node as a Server. |
5.1.5 PERFORMANCE TESTING:
Performance tests are utilized in order to determine the widely defined performance of the software system such as execution time associated with various parts of the code, response time and device utilization. The intent of this testing is to identify weak points of the software system and quantify its shortcomings.
Description | Expected result |
This is required to assure that an application perforce adequately, having the capability to handle many peers, delivering its results in expected time and using an acceptable level of resource and it is an aspect of operational management. | Should handle large input values, and produce accurate result in a expected time. |
5.1.6 RELIABILITY TESTING:
The software reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time and it is being ensured in this testing. Reliability can be expressed as the ability of the software to reveal defects under testing conditions, according to the specified requirements. It the portability that a software system will operate without failure under given conditions for a given time interval and it focuses on the behavior of the software element. It forms a part of the software quality control team.
Description | Expected result |
This is to check that the server is rugged and reliable and can handle the failure of any of the components involved in provide the application. | In case of failure of the server an alternate server should take over the job. |
5.1.7 SECURITY TESTING:
Security testing evaluates system characteristics that relate to the availability, integrity and confidentiality of the system data and services. Users/Clients should be encouraged to make sure their security needs are very clearly known at requirements time, so that the security issues can be addressed by the designers and testers.
Description | Expected result |
Checking that the user identification is authenticated. | In case failure it should not be connected in the framework. |
Check whether group keys in a tree are shared by all peers. | The peers should know group key in the same group. |
5.1.8 WHITE BOX TESTING:
White box testing, sometimes called glass-box testing is a test case design method that uses the control structure of the procedural design to derive test cases. Using white box testing method, the software engineer can derive test cases. The White box testing focuses on the inner structure of the software structure to be tested.
Description | Expected result |
Exercise all logical decisions on their true and false sides. | All the logical decisions must be valid. |
Execute all loops at their boundaries and within their operational bounds. | All the loops must be finite. |
Exercise internal data structures to ensure their validity. | All the data structures must be valid. |
5.1.9 BLACK BOX TESTING:
Black box testing, also called behavioral testing, focuses on the functional requirements of the software. That is, black testing enables the software engineer to derive sets of input conditions that will fully exercise all functional requirements for a program. Black box testing is not alternative to white box techniques. Rather it is a complementary approach that is likely to uncover a different class of errors than white box methods. Black box testing attempts to find errors which focuses on inputs, outputs, and principle function of a software module. The starting point of the black box testing is either a specification or code. The contents of the box are hidden and the stimulated software should produce the desired results.
Description | Expected result |
To check for incorrect or missing functions. | All the functions must be valid. |
To check for interface errors. | The entire interface must function normally. |
To check for errors in a data structures or external data base access. | The database updation and retrieval must be done. |
To check for initialization and termination errors. | All the functions and data structures must be initialized properly and terminated normally. |
All
the above system testing strategies are carried out in as the development,
documentation and institutionalization of the proposed goals and related
policies is essential.
CHAPTER 6
6.0 SOFTWARE DESCRIPTION:
Java technology is both a programming language and a platform.
With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.
You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java byte codes help make “write once, run anywhere” possible. You can compile your program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or on an iMac.
A platform is the hardware or software environment in which a program runs. We’ve already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java platform differs from most other platforms in that it’s a software-only platform that runs on top of other hardware-based platforms.
The Java platform has two components:
You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.
The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? Highlights what functionality some of the packages in the Java API provide.
The following figure depicts a program that’s running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.
Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring performance close to that of native code without threatening portability.
The most common types of programs written in the Java programming language are applets and applications. If you’ve surfed the Web, you’re probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.
However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.
An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and print servers. Another specialized program is a servlet.
A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.
How does the API support all these kinds of programs? It does so with packages of software components that provides a wide range of functionality. Every full implementation of the Java platform gives you the following features:
The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.
We can’t promise you fame, fortune, or even a job if you learn the Java programming language. Still, it is likely to make your programs better and requires less effort than other languages. We believe that Java technology will help you do the following:
Microsoft Open Database Connectivity (ODBC) is a standard programming interface for application developers and database systems providers. Before ODBC became a de facto standard for Windows programs to interface with database systems, programmers had to use proprietary languages for each database they wanted to connect to. Now, ODBC has made the choice of the database system almost irrelevant from a coding perspective, which is as it should be. Application developers have much more important things to worry about than the syntax that is needed to port their program from one database to another when business needs suddenly change.
Through the ODBC Administrator in Control Panel, you can specify the particular database that is associated with a data source that an ODBC application program is written to use. Think of an ODBC data source as a door with a name on it. Each door will lead you to a particular database. For example, the data source named Sales Figures might be a SQL Server database, whereas the Accounts Payable data source could refer to an Access database. The physical database referred to by a data source can reside anywhere on the LAN.
The ODBC system files are not installed on your system by Windows 95. Rather, they are installed when you setup a separate database application, such as SQL Server Client or Visual Basic 4.0. When the ODBC icon is installed in Control Panel, it uses a file called ODBCINST.DLL. It is also possible to administer your ODBC data sources through a stand-alone program called ODBCADM.EXE. There is a 16-bit and a 32-bit version of this program and each maintains a separate list of ODBC data sources.
From a programming perspective, the beauty of ODBC is that the application can be written to use the same set of function calls to interface with any data source, regardless of the database vendor. The source code of the application doesn’t change whether it talks to Oracle or SQL Server. We only mention these two as an example. There are ODBC drivers available for several dozen popular database systems. Even Excel spreadsheets and plain text files can be turned into data sources. The operating system uses the Registry information written by ODBC Administrator to determine which low-level ODBC drivers are needed to talk to the data source (such as the interface to Oracle or SQL Server). The loading of the ODBC drivers is transparent to the ODBC application program. In a client/server environment, the ODBC API even handles many of the network issues for the application programmer.
The advantages
of this scheme are so numerous that you are probably thinking there must be
some catch. The only disadvantage of ODBC is that it isn’t as efficient as talking
directly to the native database interface. ODBC has had many detractors make
the charge that it is too slow. Microsoft has always claimed that the critical
factor in performance is the quality of the driver software that is used. In
our humble opinion, this is true. The availability of good ODBC drivers has
improved a great deal recently. And anyway, the criticism about performance is
somewhat analogous to those who said that compilers would never match the speed
of pure assembly language. Maybe not, but the compiler (or ODBC) gives you the
opportunity to write cleaner programs, which means you finish sooner.
Meanwhile, computers get faster every year.
6.6 JDBC:
In an effort to set an independent database standard API for Java; Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access mechanism that provides a consistent interface to a variety of RDBMSs. This consistent interface is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he or she must provide the driver for each platform that the database and Java run on.
To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC. As you discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing a completely new connectivity solution.
JDBC was announced in March of 1996. It was released for a 90 day public review that ended June 8, 1996. Because of user input, the final JDBC v1.0 specification was released soon after.
The remainder of this section will cover enough information about JDBC for you to know what it is about and how to use it effectively. This is by no means a complete overview of JDBC. That would fill an entire book.
Few software packages are designed without goals in mind. JDBC is one that, because of its many goals, drove the development of the API. These goals, in conjunction with early reviewer feedback, have finalized the JDBC class library into a solid framework for building database applications in Java.
The goals that were set for JDBC are important. They will give you some insight as to why certain classes and functionalities behave the way they do. The eight design goals for JDBC are as follows:
SQL Level API
The designers felt that their main goal was to define a SQL interface for Java. Although not the lowest database interface level possible, it is at a low enough level for higher-level tools and APIs to be created. Conversely, it is at a high enough level for application programmers to use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code and to hide many of JDBC’s complexities from the end user.
SQL Conformance
SQL syntax varies as you move from database vendor to database vendor. In an effort to support a wide variety of vendors, JDBC will allow any query statement to be passed through it to the underlying database driver. This allows the connectivity module to handle non-standard functionality in a manner that is suitable for its users.
JDBC must be implemental on top of common database interfaces
The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal allows JDBC to use existing ODBC level drivers by the use of a software interface. This interface would translate JDBC calls to ODBC and vice versa.
Because of Java’s acceptance in the user community thus far, the designers feel that they should not stray from the current design of the core Java system.
This goal probably appears in all software design goal listings. JDBC is no exception. Sun felt that the design of JDBC should be very simple, allowing for only one method of completing a task per mechanism. Allowing duplicate functionality only serves to confuse the users of the API.
Strong typing allows for more error checking to be done at compile time; also, less error appear at runtime.
Because more often than not, the usual SQL calls
used by the programmer are simple SELECT’s,
INSERT’s,
DELETE’s
and UPDATE’s,
these queries should be simple to perform with JDBC. However, more complex SQL
statements should also be possible.
Finally we decided to precede the implementation using Java Networking.
And for dynamically updating the cache table we go for MS Access database.
Java ha two things: a programming language and a platform.
Java is a high-level programming language that is all of the following
Simple Architecture-neutral
Object-oriented Portable
Distributed High-performance
Interpreted Multithreaded
Robust Dynamic Secure
Java is also unusual in that each Java program is both compiled and interpreted. With a compile you translate a Java program into an intermediate language called Java byte codes the platform-independent code instruction is passed and run on the computer.
Compilation happens just once; interpretation occurs each time the program is executed. The figure illustrates how this works.
The TCP/IP stack is shorter than the OSI one:
TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.
The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a checksum that includes its own header. The header includes the source and destination addresses. The IP layer handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for transmission and reassembling them at the other end.
UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and port numbers. These are used to give a client/server model – see later.
TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two processes can use to communicate.
In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they can be located. The address is a 32 bit integer which gives the IP address.
Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network addressing. Class C uses 24 bit network addressing and class D uses all 32.
Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-bit addressing, allowing 1024 different hosts.
8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the subnet.
The 32 bit address is usually written as 4 integers separated by dots.
A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these ports are “well known”.
A socket is a data structure maintained by the system
to handle network connections. A socket is created using the call socket
. It returns an integer that is like a file
descriptor. In fact, under Windows, this handle can be used with Read File
and Write File
functions.
#include <sys/types.h>
#include <sys/socket.h>
int socket(int family, int type, int protocol);
Here “family” will be AF_INET
for IP communications, protocol
will be zero, and type
will depend on whether TCP or UDP is used. Two
processes wishing to communicate over a network create a socket each. These are
similar to two ends of a pipe – but the actual pipe does not yet exist.
6.8 JFREE CHART:
JFreeChart is a free 100% Java chart library that makes it easy for developers to display professional quality charts in their applications. JFreeChart’s extensive feature set includes:
A consistent and well-documented API, supporting a wide range of chart types;
A flexible design that is easy to extend, and targets both server-side and client-side applications;
Support for many output types, including Swing components, image files (including PNG and JPEG), and vector graphics file formats (including PDF, EPS and SVG);
JFreeChart is “open source” or, more specifically, free software. It is distributed under the terms of the GNU Lesser General Public Licence (LGPL), which permits use in proprietary applications.
Charts showing values that relate to geographical areas. Some examples include: (a) population density in each state of the United States, (b) income per capita for each country in Europe, (c) life expectancy in each country of the world. The tasks in this project include: Sourcing freely redistributable vector outlines for the countries of the world, states/provinces in particular countries (USA in particular, but also other areas);
Creating an appropriate dataset interface (plus
default implementation), a rendered, and integrating this with the existing
XYPlot class in JFreeChart; Testing, documenting, testing some more,
documenting some more.
Implement a new (to JFreeChart) feature for interactive time series charts — to display a separate control that shows a small version of ALL the time series data, with a sliding “view” rectangle that allows you to select the subset of the time series data to display in the main chart.
There is currently a lot of interest in dashboard displays. Create a flexible dashboard mechanism that supports a subset of JFreeChart chart types (dials, pies, thermometers, bars, and lines/time series) that can be delivered easily via both Java Web Start and an applet.
The property editor mechanism in JFreeChart only
handles a small subset of the properties that can be set for charts. Extend (or
reimplement) this mechanism to provide greater end-user control over the
appearance of the charts.
CHAPTER 7
APPENDIX
7.1 SAMPLE SOURCE CODE
7.2
SAMPLE OUTPUT
CHAPTER 8
8.1 CONCLUSION
Sharing video over VANETs is challenging
due to dynamic and unpredictable topology, low bandwidth, and fleeting connections.
In this paper, we have proposed a framework, VeDi, for vehicular crowd
sourced video social network over VANETs. In the proposed work, vehicles share
metadata based description of videos that are captured by the occupants of the
vehicle and are accessible to surrounding vehicles. The metadata consists of
video specifications and derived blur and shakiness measures. These metadata
scores help video consumers to select the right video while on the roadway. VeDi
reduces the overall bandwidth consumption as users can select most
appropriate video without downloading them all. We have provided implementation
technique of DSRC type tNote message and encoding size analysis at
various system instances. A detail about system architecture implementation
approach is also provided with various observations. In our future work, we
envision presenting the modeling and simulation results of the proposed system
along with scalability measurements and required optimizations.
CHAPTER 9
9.1 REFERENCES